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NOTES 

1. This report for Phase II is divided into two parts based on analyses conducted for road segments 
and intersections. Part 1 presents in detail the analyses for rural multilane highways including 
both four-lane divided (4D) and four-lane undivided (4U), and five types of urban and suburban 
arterials which include two-lane (2U), three-lane with two-way-left-turn lane, four-lane divided 
(4D), four-lane undivided (4U), and five-lane with a two-way left-turn lane (2WLTL) (5T) road 
segments conducted by the University of Tennessee, Knoxville (UTK) team. Part 2 presents in 
detail the analyses for rural multilane and urban and suburban intersections conducted by the 
Tennessee State University (TSU) team. To achieve project objectives, the teams have had close 
coordination during Phase II of the project.  

2. The previous version of this report was updated because the data extraction in the previous 
version required segments with structures, e.g., bridges. TDOT staff provided guidance on how to 
conduct queries that relaxed the requirement of the structure. This resulted in the revision of the 
entire data extraction process, which was undertaken. The activities conducted in updating the 
Phase II report for segments can be summarized as follows: 

a. Re-extraction of crash and inventory data for seven types of roadways based on the query 
procedure provided by TDOT staff. These include rural multi-lane highways (2 types), and 
urban and suburban arterials (5 types).  

b. The new sample sizes of 4D and 4U segments of rural multilane used for analysis (after 
cleaning) are 271 and 81, respectively. While the new sample size of 2U, 3T, 4D, 4U, and 
5T segments of urban and suburban arterials finally used for analyses are 234, 80, 278, 
80, and 304, respectively. 

c. Fully covering 3T and 4U Urban & Suburban Arterials (which were not covered before due 
to the query issue). 

d. Covering and analyzing all seven roadway types (as mentioned in the proposal) in the 
updated report. 

3. The literature review is embedded in the appropriate sections of the report.  
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Executive Summary 
To enhance safety on Tennessee roadways and calibrate the Highway Safety Manual (HSM) predictive 
models for TDOT use, this study is a collaboration between the University of Tennessee (focusing on 
segments) and Tennessee State University (focusing on intersections). The Tennessee Department of 
Transportation (TDOT) is in the process of adopting the HSM as a resource to facilitate decision making 
based on the safety performance of its roadways. The HSM will provide TDOT with quantitative 
information for decision making, presenting tools, and methodologies for consideration of safety across 
the range of highway activities. Key features in the 2010 HSM for use by TDOT are the crash Predictive 
Models for three facility types:  
 

● Rural Two-Lane and Two-Way Roads 
● Rural Multilane Highways 

o Four Lane Divided Segments 
o Four Lane Undivided Segments 

● Urban and Suburban Arterials 
o Two-Lane Undivided (2U) Segments 
o Three Lane with Two-Way Left-Turn Lane (2WLTL) (3T) Segments 
o Four Lane Divided (4D) Segments 
o Four Lane Undivided (4U) Segments 
o Five Lane with Two-Way Left-Turn Lane (2WLTL) (5T) Segments 

 
Part 1 of the Phase 2 report focuses on segments. The calibration results are summarized in the following 
Table.  
 

Location Project Phase Facility Type Divided Undivided 
Rural Phase I Two-lane Two-Way NA 2.49 

Phase II Four-lane (Multilane) 1.47 2.25 
Urban and Suburban Phase II Two-lane (2U) NA 4.71 

Phase II Three-lane (3T) NA 5.82 
Phase II Four-lane (4D and 4U) 4.46 7.63 
Phase II Five-lane (5T) NA 3.57 

 
This report documents in detail the activities undertaken in Phase 2 of the project to calibrate the HSM 
safety performance functions (SPFs) for rural multilane highways and urban and suburban arterial roads. 
Given the availability of data in E-TRIMS, TDOT is in a good position to calibrate HSM default SPFs to match 
local conditions in Tennessee. As such, a detailed crash rate and calibration factor analysis are conducted 
for rural multilane highways and urban and suburban arterial roads using five years (2013-2017) of crash, 
road inventory, and traffic data. In addition, considering the diverse geographical nature of Tennessee 
rural multilane highways and urban and suburban arterial road infrastructures, crash rates and calibration 
factors are calculated for all four regions in Tennessee collectively as well as for each of the four regions 
separately. Likewise, in order to capture the temporal variations, the analysis is conducted both using data 
for all five years (2013-2017) together as well as separate analysis is conducted for each of the five years.  
 
Building on the aforementioned tasks, as an additional activity, an in-depth empirical analysis is conducted 
for developing Tennessee-specific SPFs considering different distribution assumptions, i.e., the Poisson 
and negative binomial distributions. Given the count nature of crashes, Tennessee-specific SPFs are 
developed using both the fixed-parameter Poisson and negative binomial models. Such analysis provides 
greater localization than is possible with calibration factors. 
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Despite the fact that jurisdiction-specific fixed-parameter SPFs (as compared to the HSM SPFs) can better 
represent local conditions at hand, traffic crash frequencies and associated factors (such as traffic 
volumes) can vary significantly across similar, or even identical, road geometry and conditions within the 
jurisdiction (i.e., Tennessee in this case) where a single SPF is estimated. Alternatively, this means that 
associations between crashes on rural multilane highways and/or urban and suburban arterial roads and 
associated factors can be heterogeneous (or varying), requiring further investigation. As a methodological 
advance, it is important to correct for heterogeneity in the modeled relationships that can arise from 
some observed and unobserved factors relating to road driver behavior, vehicle types, socioeconomic 
factors, traffic and pavement characteristics, road geometry, variations in police accident recording 
thresholds, and other time and space-related unobserved factors.  
 
Overall, our analyses suggest that the number of observed crashes on two types of rural multilane 
highways (four-lane divided and undivided segments) and five types of urban and suburban arterials (i.e., 
2U, 3T, 4D, 4U and 5T segments) were significantly higher than the predicted number of crashes by 
applying the HSM SPFs and modification factors (i.e., after accounting for local conditions), indicating a 
potential for safety improvements. Note that a calibration factor is the ratio of observed crashes to 
predicted crashes. The predicted crashes can be for base conditions (capturing exposure and standard 
road geometry) or adjusted conditions (capturing exposure and any deviations from standard road 
geometry, e.g., 10 ft lanes instead of standard 12 ft lanes). The predicted crashes used in this study are 
for adjusted conditions based on the HSM (2010) SPFs and crash modification factors that capture 
deviations from standard road geometry, i.e., they capture local conditions.  After accounting for local 
roadway conditions, the adjusted calibration factors for 4D and 4U segments of rural multilane highways 
are found to be 1.47 and 2.25 respectively which indicate that the observed (actual) number of crashes 
on 4D and 4U segments of rural multilane highways are greater than those predicted by the HSM. The 
situations on various types of urban and suburban arterials (i.e., 2U, 3T, 4D, 4U, and 5T) in Tennessee 
show even greater improvement potential as observed crashes are substantially higher than predicted by 
the HSM (2010) even after adjusting for local conditions. Our analyses indicate that calibration factors for 
the HSM after accounting for local conditions on Tennessee roadways for 2U, 3T, 4D, 4U, and 5T segments 
of urban and suburban arterials are found to be 4.71 (for 2U segments), 5.82 (3T), 4.46 (4D), 7.63 (4U), 
and 3.57 (5T). These adjusted calibration factors can be used for the analysis of safety by TDOT. 

Besides calibration factors, the HSM equivalent to the fixed-parameter Poisson and negative binomial 
models are estimated for various roadway types that include 2 types of rural multilane and 5 types of 
urban and suburban arterial. These are based on the Tennessee crash and inventory data. Compared to 
the fixed-parameter Poisson, the fixed-parameter negative binomial model significantly improved the 
performance of the model. The negative binomial models improved the estimation/prediction 
performance for all the roadway types. The implications of the findings and recommendations are 
discussed in the report.  
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1. INTRODUCTION & BACKGROUND 
 
1.1. Synopsis of the problem 
The Highway Safety Manual (HSM) published by the American Association of State Highway and 
Transportation Officials (AASHTO) serves as the main guideline for transportation agencies by providing 
scientific techniques to identify factors associated with road safety outcomes and the likelihood of crash 
occurrence (1). As the core tools provided in the HSM, Safety Performance Functions (SPFs) are used to 
estimate the expected crash frequencies at a particular facility. The crash predictive models which are 
known as SPFs are the statistical models used to estimate the expected crash frequency for a particular 
facility type with specified “base” conditions (2). Importantly, SPFs that accurately predict crashes are 
valuable to state departments of transportation as they identify areas with potential safety concerns.  
 
Since crash occurrence/frequency and the associated under- and over-dispersion in crash data can vary 
significantly across jurisdictions, it is important to calibrate the HSM SPFs for specific jurisdictions (3). This 
need for calibrating the HSM SPFs to specific jurisdictions is clearly recognized by AASHTO due to 
variations in safety factors. Such factors include road geometry and conditions, environmental factors, 
geographic characteristics, crash characteristics, reporting thresholds, all of which can be unique to 
specific jurisdictions (1). As such, the 2010 HSM recommends local agencies, such as TDOT, to calibrate 
the HSM developed SPFs to reflect local conditions and/or develop their own SPFs using local data (1). In 
essence, calibration is the process of multiplying the HSM predictive models (SPFs) by a factor to account 
for Tennessee HSM users. Specifically, the calibration factors are the sum of observed crashes divided by 
the SPF predicted crashes for the sites of a particular facility type.  
 
The calibration procedure of the HSM predictive models can account for the variations in safety factors 
associated with segments of any specific roadway class, and thus can facilitate more accurate crash 
predictions compared to the un-calibrated HSM predictive models. However, when enough data are 
available, the HSM permits transportation agencies to develop jurisdiction-specific SPFs. Building upon 
this, an in-depth empirical analysis is conducted for developing Tennessee-specific SPFs1. Specifically, 
given the count nature of crashes, Tennessee-specific SPFs were developed using the Poisson and negative 
binomial distributions used by researchers in different US states. Even though jurisdiction-specific SPFs 
(as compared to the HSM SPFs) can better represent local conditions at hand, traffic crash frequencies 
and associated factors (such as traffic volumes) can vary significantly across similar, or even identical, road 
geometry and conditions within the jurisdiction (such as Tennessee) where a single SPF is estimated. 
Alternatively, this means that associations between crashes on various rural multilane highways and 
urban and/or suburban arterial road segments and associated factors are generally heterogeneous (or 
varying). It is important to correct for heterogeneity in the modeled relationships that can arise from some 
observed and unobserved factors relating to road driver behavior, vehicle types, socioeconomic factors, 
traffic and pavement characteristics, road geometry, variations in police accident recording thresholds, 
and other time and space-related unobserved factors.  
 
Keeping in view the aforementioned perspective, the key objectives of this study are to: 
 

● Apply the HSM predictive models to various types of rural multilane highways and urban and 
suburban arterial road segments. 

● By using detailed traffic, road inventory, and crash data, compute calibration factors for various 

                                                            
1 In addition to the identified tasks in Phase 1 of the project, the comprehensive analysis of estimating TN-specific 
SPFs (which is important for better safety monitoring in Tennessee) is conducted as an additional task.  
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types of rural multilane highways and urban and suburban arterial road segments. 
● While accounting for unobserved heterogeneity, develop new Tennessee-specific SPFs for various 

types of rural multilane highways and urban and suburban arterial road segments. 
 
1.2. SCOPE  
Different states have calibrated the HSM for various types of roadways using local data. This proposed 
study will, therefore, focus on Tennessee with the following scope of the study:   

● To provide calibration factors for SPFs following HSM procedures. In addition to the calibration 
tasks, the objectives will be to develop Tennessee specific SPFs based on rigorous predictive 
modeling that can better reflect Tennessee roadway conditions, climate, terrain, population, and 
crash reporting methodologies. Data from the E-TRIMS will be used for the estimation of SPFs.   

● To estimate the HSM SPFs for rural multilane highways and urban and suburban arterials.   
● To review AASHTO’s Safety Analyst Tool and explore implications for TDOT’s current Hexagon 

“HSIP” tool to best meet TDOT needs.   
● To make recommendations about integrating the HSM into TDOT’s safety analysis process.  

 
1.3. Deliverables 
The project deliverables include: 

● Applying predictive models for Rural Multilane Highways. 
● Computing calibration factors for Rural Multilane Highway using predictive models. 
● Developing Tennessee-specific SPFs for Rural Multilane Highways. 
● Applying predictive models for Urban and Suburban Arterials. 
● Computing calibration factors for Urban and Suburban Arterials. 
● Developing Tennessee-specific SPFs for Urban and Suburban Arterials. 
● Reviewing of AASHTO’s Safety Analyst tool. 
● Providing recommendations for integrating the HSM into TDOT’s network screening process. 
● Performing Technology Transfer, e.g., papers presented at the Transportation Research Board 

annual meeting.  
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2. METHODOLOGY/CONCEPTUAL FRAMEWORK 
2.1. Time period for analysis 
To meet the study objectives (in Phase II), we collected crash, traffic, and roadway geometric data for a 
five-year period (2013-2017) for various types of rural multilane highways and urban and suburban 
arterial road segments. This study analyzes two different types of rural multilane highways including four-
lane divided (4D) and four-lane undivided (4U) road segments, and five different types (2U, 3T, 4D, 4U 
and 5T) of urban and suburban arterials. Since crash frequencies are random and rare events, it is better 
to express them as an average for multiple years. Moreover, considering multiple years of data for analysis 
accounts for regression to the mean philosophy as discussed by (4). Similarly, the HSM also recommends 
using data for a time period similar to the length of time which is planned to be used in practice (1). Given 
the aforementioned discussion, this study uses crash, traffic, and geometric data for a period of five years 
(2013-2017). For calibration factors analysis, we conduct these analyses for each year and the average of 
five years of data. For the development of Tennessee-specific SPFs, the average of five years of data was 
used in all subsequent model estimations (3; 5).  
 
2.2. Data assembly 
Substantial efforts went into manually extracting data from various sources of the Tennessee Department 
of Transportation (TDOT). Initially, a main query (i.e., selecting accurate functional classification, number 
of lanes, and presence of specific features (e.g., median, two-way-left-turn-lane separating opposite 
directional flow)) was run in E-TRIMS to extract all segments of rural multilane highways (4D and 4U) and 
urban and suburban arterials (2U, 3T, 4D, 4U, and 5T segments). All roadway segments belonging to a 
specific roadway class were identified and extracted from E-TRIMS. The selection of four-lane undivided 
(4U) segments (i.e., both rural multilane, and urban and suburban arterials) in E-TRIMS were challenging 
as there was no appropriate feature type option based on which we could extract simple 4U segments 
(i.e., where opposing traffic is separated via solid yellow line only). TDOT provided guidance on this, and 
we extracted 4U segments for each arterial (rural multilane, urban, and suburban). As a next step, shorter 
segments (i.e., segment length lesser than 0.10 mile) and those with route number issue (i.e., which were 
not extractable from the TDOT Image Viewer – the route number of such segments included only digit 
with no suffix like SR) were removed from the data. After this, random samples from the clean data of 4D 
rural multilane and all five types of urban and suburban arterials (2U, 3T, 4D, 4U, and 5T) were selected 
which represent diverse statewide geographical conditions. Importantly, the clean data for overall 4U 
segments of rural multilane were found to have a fewer number of segments therefore no random sample 
was selected for this specific class (Table 2). 

As a next step, we collected five years (2013-2017) of crash data and roadway geometric data for each of 
the types of rural multilane highways and urban and suburban arterials. The data extraction procedure is 
discussed below in detail: 

• The crash data, for each of the five years (2013-2017), were obtained from the police crash reports 
in TDOT’s E-TRIMS (https://e-trims.tdot.tn.gov). 

• Roadway geometric information of these roadways was extracted using TDOT’s Image Viewer 
Software in E-TRIMS (https://e-trims.tdot.tn.gov). A significant amount of effort went into 
extracting data on the number of fixed objects per mile, the number of different driveways per 
mile (i.e., including residential, industrial, commercial, and other), and offset distance to fixed 
objects along the roadway segments of the three types of urban and suburban arterials as needed 
for calibration according to the HSM (2010) guidelines.  

• Traffic data including average annual daily traffic (AADT) for each of the five years (2013-2017) 
were obtained using TDOT’s traffic history application for each segment 
(https://www.tdot.tn.gov/APPLICATIONS/traffichistory).  

https://e-trims.tdot.tn.gov/
https://e-trims.tdot.tn.gov/
https://www.tdot.tn.gov/APPLICATIONS/traffichistory
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• Finally, the three data files including crash, roadway geometric, and traffic files were merged using 
unique BLM, ELM, county, route name, sequence number, and station number associated with 
each roadway segment, respectively. Figure 1 summarizes the procedure followed while 
collecting and linking different data elements.  

 

 
 

Figure 1. An Overview of Data Collection using TDOT’s E-TRIMS and TDOT’s Traffic History Application  
 
The summary of data inclusion required for calibration analysis of different roadway types is shown in 
Table1. The overall number of segments for various roadway types (excluding four-lane undivided (4U) 
rural multilane, and urban and suburban arterials) in Tennessee were identified by running a main query 
in E-TRIMS and specifying the appropriate functional class (i.e., arterials), the number of lanes (i.e., four 
lanes), and feature type (i.e., two-way left-turn lane (2WLTL) or median). TDOT provided guidance in the 
identification of 4U segments for both rural multilane and urban and suburban arterials. Besides 
providing a sample query for retrieving the 4U segments, TDOT also provided an excel sheet including all 
4U segments (both Rural and Urban) in Tennessee. For the sake of accuracy, we also ran the query 
suggested by TDOT for identifying 4U rural multilane highways and urban and suburban arterials by 
adding a query of urban classification (i.e., rural/urban) to separate the 4U rural multilane and 4U urban 
and suburban arterial segments. The following query was used to identify the 4U segments for both 
rural multilane and urban and suburban arterials: 

• Road Segment: Functional Classification (Rural/Urban Arterials) 
• Roadway Description: Route Like = SR (State Route) 
• Roadway Description: Feature Type = Pavement 
• Roadway Description: Feature Width ≥ 40 feet 

The outcomes of this query are 4U segments and 4D segments with a pavement width greater than 40 
feet. The duplicate log mile segments were then deleted, and the segments were checked in the TDOT 
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Image Viewer Application to exclude 4D segments from further analysis. The data collection for various 
types of rural multilane highways and urban and suburban arterials are discussed below. 
 

Table 1. Data Inclusion Summary by Roadway Functional Class for Calibration and SPF 

DATA ELEMENT 
ROADWAY FUNCTIONAL CLASSIFICATION 

RURAL MULTILANE URBAN & SUBURBAN 
Segment Length E-TRIMS data E-TRIMS data 
Average Annual Daily Traffic (AADT) (for each year) *Data extracted * Data extracted 
Lane Width *Data extracted Not required 
Number of the Through Traffic Lanes E-TRIMS data E-TRIMS data 
Presence of Median E-TRIMS data E-TRIMS data 
Median Width *Data extracted Not required 
Median Type *Data extracted Not required 
Shoulder Width (inner and outer) *Data extracted Not required 
Shoulder Type **Optional Not required 
Presence of Lightning E-TRIMS data E-TRIMS data 
Presence of Two-way-left-turn Lane **Optional *Data extracted 
Presence of Centerline Rumble Strip **Optional Not required 
Presence of Inner/Outer Rumble Strip **Optional Not required 
Number of Driveways by Different Land Use Not required *Data extracted 
Roadside Fixed Object Density Not required *Data extracted 
Presence of On-street Parking Not required *Data extracted 
Type of On-street Parking Not required *Data extracted 

Notes: The green text highlight color indicates that information on a specific factor was available in TDOT’s E-TRIMS 
database; the red text highlight color indicates that a specific factor was not required in the calibration as per the 
HSM (2010) criteria. 
“*” indicates that additional data collection efforts were made to extract several geometric factors (mainly from  
TDOT’s E-TRIMS Image Viewer Application) or year wise traffic (AADT) data (mainly from TDOT’s Traffic History 
Application).  
“**” indicates that data on these factors were not required for calibration analysis but were additionally extracted 
for SPF development.  
 

2.2.1. Rural Multilane Highways 

The E-TRIMS database showed a total of 2,065 (815.46 miles) and 142 (36.95 miles) segments of 4D and 
4U rural multilane highways in Tennessee, respectively (Table 2). All segments of 4D and 4U rural 
multilane highways were extractable from the TDOT’s Image Viewer Application using the route number 
(Table 2). However, a significant number of segments were found to be shorter than 0.1 miles and were 
therefore excluded from further analyses. A total of 933 (48.35 miles) and 61 (2.93 miles) segments of 4D 
and 4U rural multilane respectively were found to be less than 0.1 miles and were excluded (Table 2). 
Importantly, the resulting clean data on 4U rural multilane highways includes 81 segments (34.02 miles). 
Additionally, the clean data for 4D rural multilane highways includes 1,132 segments (767.11 miles) from 
which a random sample of 296 segments (186.959 miles) was selected. Finally, 271 4D and 81 4U segments 
of rural multilane highways with complete information were considered for analyses. It is important to 
mention that for 4U segments of rural multilane highways, we did not select a random sample, rather we 
considered the whole population for these roadway types in Tennessee. We also considered that the 
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roadway segments for each facility type do not exceed the maximum allowable limit of AADT (vehs/day) 
as recommended by the HSM (2010) (Table 3).  

Table 2. Data Collection Summary for 4D and 4U Segments of Rural Multilane Highways in Tennessee 
Rural Multilane  All Segments Shorter Segments Clean Data Random Sample 

Number Miles Number Miles Number Miles Number Miles 
Four-lane Divided (4D) 2065 815.46 933 48.35 1132 767.11 296 186.96 
Four-lane Undivided (4U) 142 36.95 61 2.93 81 34.02 --- --- 

Note: The 4U segments were selected while running the query suggested by the TDOT. The overall number of 4U 
segments (rural multilane, and urban and suburban arterials) are consistent with 4U segments (spreadsheet) by 
TDOT. Note that, we did not have any issue with 4D and 4U segments of rural multilane highways - we were able to 
extract all the segments for the two roadway types in E-TRIMS based on their route number (e.g., SR014) 
 

Table 3. Maximum allowable AADT (vehicles per day) for Various Roadways (HSM, 2010) 
Roadway Facility Maximum Allowable AADT (Vehs/day) 
Rural Multilane Divided (4D) 89,300 
Rural Multilane Undivided (4U) 33,200 
Two-lane Urban and Suburban (2U) 32,600 
Three-lane (with 2WLTL) Urban and Suburban (3T) 32,900 
Four-lane Divided Urban and Suburban (4D) 66,000 
Four-lane Undivided Urban and Suburban (4U) 40,100 
Five-lane (with 2WLTL) Urban and Suburban (5T) 53,800 

 
The final sample of 4D rural multilane highways considered for analyses includes 44, 78, 41, 108 roadway 
segments from region 1 (Knoxville), region 2 (Chattanooga), region 3 (Nashville), and region 4 (Memphis), 
respectively (Figure 2). Similarly, the final dataset of 4U rural multilane highways considered for analyses 
include 20, 14, 19, and 28 roadway segments in region 1, 2, 3, and 4, respectively (Figure 3). 

 
Figure 2. Distribution of 4D Segments of Rural Highway segments across Tennessee (N=271) 
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Figure 3. Distribution of 4U Segments of Rural Highway segments across Tennessee (N=81). 

Note: The number of segments of 4U rural multilane highways meets the HSM’s minimum sample size 
criteria (30+ segments), still the number of segments in some regions (i.e., Region 1, 2, and 3) have lower 
sample size than 30. Therefore, the region-wise calibration factors (please refer to Appendix C) should be 
used with caution due to fewer than 30 segments in these regions. Note that we did not select any random 
sample for this specific roadway type but rather used the population of segments which were 81 
segments, after data cleaning. 

2.2.2. Urban and Suburban Arterials 

The E-TRIMS database shows that the total number of 2U, 3T, 4D, 4U, and 5T segments of suburban 
arterials in Tennessee are 7,085 (2165.15 miles), 1,659 (304.83 miles), 5,294 (853.13 miles), 737 (135.44 
miles), and 3,208 (753.97 miles), respectively (Table 4). A significant number of segments belonging to 
each of these five roadway types of urban and suburban arterial were found to have a segment length of 
less than 0.1 mile (Table 4). Similarly, a significant number of segments belonging to the remaining four 
types of urban and suburban arterials were not extractable in TDOT’s Image viewer in E-TRIMS (based on 
their route number) (Table 4). After excluding the shorter segments and those which were not extractable 
in E-TRIMS, we finally had 2,472 (1124.76 miles), 414 (117.73 miles), 1,735 (585.47 miles), 431 (120.35 
miles), and 1,519 (523.934 miles) segments of 2U, 3T, 4D, 4U, and 5T urban and suburban arterials, 
respectively (Table 4). Next, a random sample of the clean data was selected for each of the five types of 
urban and suburban arterials (Table 4). 

 

Table 4. Summary of Various Types of Urban and Suburban Arterials in Tennessee 
Roadway Type Population 

Random Sample 
All Segments Shorter Segments Clean Data 

Number Miles Number Miles Number Miles Number Miles 
Two-lane (2U) 7,085 2165.15 2,413 117.91 2,472 1124.76 341 163.89 
Three-lane (3T) with 
2WLTL 1,659 304.83 709 36.32 414 117.73 81 25.81 

Four-lane Divided (4D) 5,294 853.13 2,587 125.01 1,735 585.47 325 112.98 
Four-lane Undivided (4U) 737 135.44 306 15.09 430 120.35 86 23.97 
Five-lane (5T) with 2WLTL 3,208 753.97 851 41.29 1,519 523.93 317 105.78 

Note: It should be noticed that 2,200 (992.48 miles), 536 (150.68 miles), 972 (142.65 miles), and 837 (188.75 miles) 
segments of 2U, 3T, 4D, and 5T urban and suburban arterials were not extractable in E-TRIMS (TDOT’s Image Viewer 
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Application) due to their route numbers (i.e., their route numbers were just numbers and did not include any prefix 
like SR).  

2.2.2.1. 2U Segments of Urban and Suburban Arterials 
For the 2U urban and suburban arterials, a random sample of 341 segments (163.894 miles) was selected 
from the clean dataset (Table 4) following the standard statistical sampling procedure. While extracting 
the geometric data in the TDOT Image Viewer, we noticed that a significant number of segments in the 
random sample include a portion of other roadway types (i.e., 3T) hence we did not extract geometric 
data for such segments and were therefore excluded from further analysis.  Finally, a clean sample 
comprising of 234 segments (125.19 miles) was selected for analyses which include 67, 38, 88, and 41 
segments from region 1 (Knoxville), region 2 (Chattanooga), region 3 (Nashville), and region 4 (Memphis), 
respectively (Figure 4). 

 

 
 

Figure 4. Distribution of randomly sampled 2U urban and suburban arterial segments across 
Tennessee (N=234) 

2.2.2.2. 3T Segments of Urban and Suburban Arterials 
For the 3T segments of urban and suburban arterials, a random sample of 86 segments (25.809 miles) was 
selected from a total of 414 segments (117.73 miles) which was finally reduced to 80 segments (24.24 
miles). Hence, a total of 80 segments of 3T urban and suburban arterials are considered for final analyses. 
The random sample for 3T urban and suburban arterial is representative of the four regions in Tennessee 
as it includes 22, 16, 34, and 8 segments from region 1 (Knoxville), region 2 (Chattanooga), region 3 
(Nashville), and region 4 (Memphis), respectively (Figure 5). 

67

38

88

41

Region 1 Region 2 Region 3 Region 4
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Figure 5. Distribution of randomly sampled 3T urban and suburban arterial segments across 

Tennessee (N=80) 
Note: The random sample for 3T segments of urban and suburban arterials was selected using 90% of the 
confidence level criteria, which is in accordance with the HSM’s minimum sample size criteria (30 
segments). Note that the number of segments in some regions (i.e., Region 1, 2, and 4) is lower than 30 
segments. Therefore, the region-wise calibration factors (please refer to Appendix C) should be used with 
caution due to the lower number of segments (i.e. less than 30 segments). 

2.2.2.3. 4D Segments of Urban and Suburban Arterials 
A random sample of 325 segments (112.981 miles) was reduced to 278 segments (100.803 miles) after 
the removal of segments with incomplete data or outliers based on certain attributes (e.g., median width). 
The final clean sample of 278 segments of 4D urban and/or suburban arterials is representative of the 
four regions in Tennessee as it includes 114, 41, 59, and 64 segments from region 1 (Knoxville), region 2 
(Chattanooga), region 3 (Nashville), and region 4 (Memphis), respectively (Figure 6). 
 

 
Figure 6. Distribution of randomly sampled 4D urban and suburban arterial segments across 

Tennessee (N=278) 
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2.2.2.4. 4U Segments of Urban and Suburban Arterials 
In order to conduct the calibration analysis and SPFs development for the 4U segments of urban and 
suburban arterials, a random sample consisting of 86 segments was selected from the clean dataset (N = 
430 comprising of 120.305 miles) after excluding segments less than 0.1 miles. We finally considered 80 
segments (~ 19.63 miles) with complete data for analysis. Among these 80 segments, 14, 16, 20, and 30 
segments are from region 1 (Knoxville), region 2 (Chattanooga), region 3 (Nashville), and region 4 
(Memphis), respectively, indicating fair representation across Tennessee (Figure 7).  

 
Figure 7. Distribution of randomly sampled 4U urban and suburban arterial segments across 

Tennessee (N=80) 
Note: The random sample for 4U segments of urban and suburban arterials was selected using 90% of the 
confidence level criteria which is in accordance with the HSM’s minimum sample size criteria (30 
segments). Note that the number of segments in some regions (i.e., Region 1, 2, and 3) is lower than 30 
segments. Therefore, the region-wise calibration factors (please refer to Appendix C) should be used with 
caution due to the lower number of segments (i.e. less than 30 segments). 

2.2.2.5. 5T Segments of Urban and Suburban Arterials 
Finally, a random sample of 317 segments (105.78 miles) of 5T urban and suburban arterials was selected 
from the clean data set (Table 4). Nonetheless, we considered 304 segments (103.269 miles) of 5T urban 
and suburban arterials after removing segments with incomplete data and/or outlying observations based 
on certain roadway attributes. Among these 304 segments, 87, 46, 119, and 52 segments are from region 
1 (Knoxville), region 2 (Chattanooga), region 3 (Nashville), and region 4 (Memphis), respectively (Figure 
8). 
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Figure 8. Distribution of randomly sampled 5T urban and suburban arterial segments across 

Tennessee (N=304) 

The geometric data collected on variables for rural multilane highway segments as recommended by (1) 
include (Figure 9): 

● Lane width 
● Median width 
● Median type 
● Shoulder width (both inner and outer) 
● Shoulder type (both inner and outer) 
● Presence or absence of roadway lighting  
● Presence or absence of rumble strips 
● Presence or absence of automated speed enforcement 

87

46

119

52

Region 1 Region 2 Region 3 Region 4



 
 

12 
 

 

Also, we collected data on additional variables for urban and suburban arterials as recommended by the 
HSM (1) using TDOT’s Image Viewer Software (E-TRIMS) including: 

● Lane width 
● Number of major driveways per mile (commercial, industrial, residential, and other) 
● Number of minor driveways per mile (commercial, industrial, residential, and other) 
● Length of on-street parking along a roadway segment 
● Number of fixed objects along a roadway segment 
● Offset to fixed objects along a roadway segment 
● Median width (for 4D segments of urban and suburban arterials) 
● Median type (for 4D segments of urban and suburban arterials) 

 
2.3. Crash rates and calibration factor analysis 

2.3.1. Crash Rates 

Prior to conducting detailed empirical analyses of different types of rural multilane highways and urban 
and suburban arterials, we use crash rates as an effective “first brush” tool for quantifying the relative 
safety at specific locations on rural multilane highways and urban and suburban arterials. Crash rates are 
usually established while normalizing the total number of crashes by any exposure-related factor(s), like 
AADT or segment length. The key objective of this analysis is to compute and determine the safety of 
different roadway segments of rural multilane highways (4D and 4U) and urban and suburban arterials 
(2U, 3T, 4D, 4U, and 5T) in Tennessee and to determine how crash rates vary across different regions in 
Tennessee. Crash rates can be estimated using different measures of exposure like crash rates by segment 
length and crash rate by vehicle miles traveled (VMT) (1). We estimate the crash rates by both segment 
length and by VMT for various roadway segments of rural multilane and urban and suburban arterials in 
Tennessee.  
 

Figure 9. Illustration of TDOT’s Image Viewer Software (E-TRIMS) for Manual Extraction of Key 
Roadway Geometric Data (Multilane Highways). 
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The crash rates by VMT can be computed as follows (6): 
 

𝑅𝑅 =
𝐶𝐶 ∗ 100,000,000
𝑉𝑉 ∗ 365 ∗ 𝑁𝑁 ∗ 𝐿𝐿

 (1) 

where: 
R: Crash rate per VMT 
C: Total crashes in the study period (five years) 
V: Traffic volume using Annual Average Daily Volumes 
N: Number of years of data 
L: Length of the roadway segment (miles) 

 
Similarly, crash rates per segment length can be computed as follows (6): 
 

𝑅𝑅 =
𝐶𝐶

𝑁𝑁 ∗ 𝐿𝐿
 (2) 

where: 
R = Crash rate per mile of the segment 
N = Number of years of data 
L = Length of the roadway segment (miles) 

2.3.2. Calibration Factor Analysis 

2.3.2.1. Calibration Factor Analysis for Rural Multilane Highways 
The HSM (2010) provides SPF for both 4D and 4U road segments of rural multilane highways and can be 
applied if the local conditions meet the specified base conditions as the HSM SPFs were developed based 
on data from selected states in the United States (HSM, 2010). Equation 3 represents the rural multilane 
highways SPF for roadway segments and can be applied when the base conditions (as documented in the 
HSM) meet the conditions of local jurisdictions to which the HSM SPF is applied. The HSM (2010) 
recommends applying the same SPF for both 4D and 4U segments of rural multilane highways. However, 
it is important to mention that the values of regression coefficients (a and b) in the equations are 
recommended by the HSM (2010). 
 

𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑒𝑒(𝑎𝑎+𝑏𝑏∗𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)+𝑙𝑙𝑙𝑙(𝐿𝐿)) (3) 

where: 
𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆: Base predicted number of crashes in the study period  
L: Length of roadway segment in miles 
AADT: Average annual daily traffic on a road segment  
a and b are the regression coefficients (i.e., for total crashes) 

 
It should be noted that the recommended values by the HSM for a and b are -9.025 and 1.049 for 4D 
segments, while the recommended values of a and b for 4U segments of rural multilane highways are -
9.653 and 1.176, respectively. 
 
In case local conditions do not meet the base conditions, the HSM (2010) highly recommends calibrating 
the base conditions SPFs for the local conditions by computing several CMFs (HSM 2010). Hence, equation 
(4) can be applied to compute the adjusted predicted number of crashes on a roadway segment (HSM 
2010). If the site-specific characteristics of rural multilane highways segments in Tennessee deviate from 
the HSM base conditions, the base predicted crash frequency (𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆) can be multiplied by CMFs for rural 
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multilane highways road segments provided in the HSM2 (1). The final jurisdiction-specific crashes can 
then be predicted as: 
 

𝑁𝑁 = 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐶𝐶𝐶𝐶𝐶𝐶1 × 𝐶𝐶𝐶𝐶𝐶𝐶2 × 𝐶𝐶𝐶𝐶𝐶𝐶3 × … .× 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 (4) 
where: 
 

𝑁𝑁: Adjusted predicted crash frequency in a local jurisdiction 
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖: Crash modification factors for road segment features that deviate from the HSM base 
conditions (shown above)  

 

2.3.2.2. Calibration Factor Analysis for Urban and Suburban Arterials 
The predictive models applied for urban and suburban roadway segments are given below: 

𝑁𝑁𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑟𝑟 = 𝐶𝐶𝑃𝑃 ∗ (𝑁𝑁𝑏𝑏𝑃𝑃 + 𝑁𝑁𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑖𝑖𝑎𝑎𝑙𝑙𝑟𝑟 + 𝑁𝑁𝑏𝑏𝑖𝑖𝑃𝑃𝑏𝑏𝑃𝑃𝑙𝑙𝑖𝑖𝑟𝑟𝑃𝑃𝑟𝑟)        (5)  
𝑁𝑁𝑟𝑟𝑝𝑝𝑠𝑠 𝑃𝑃𝑟𝑟 = 𝑁𝑁𝑏𝑏𝑃𝑃𝑏𝑏𝑏𝑏 +  𝑁𝑁𝑏𝑏𝑃𝑃𝑟𝑟𝑏𝑏 + 𝑁𝑁𝑏𝑏𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏            (6) 
𝑁𝑁𝑏𝑏𝑃𝑃𝑏𝑏𝑏𝑏 = 𝑒𝑒(𝑎𝑎+𝑏𝑏∗𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)+𝑙𝑙𝑙𝑙(𝐿𝐿))          (7) 
𝑁𝑁𝑏𝑏𝑃𝑃𝑟𝑟𝑏𝑏 = 𝑒𝑒(𝑎𝑎+𝑏𝑏∗𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴)+𝑙𝑙𝑙𝑙(𝐿𝐿)          (8) 

𝑁𝑁𝑏𝑏𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏 = 𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴𝛴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛 𝛴𝛴𝑜𝑜 𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑𝛴𝛴𝑑𝑑𝑑𝑑 𝑛𝑛𝑖𝑖 ∗ 𝑁𝑁𝑖𝑖 ∗ �
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
15,000

�
t
      (9) 

𝑁𝑁𝑏𝑏𝑃𝑃 = 𝑁𝑁𝑟𝑟𝑝𝑝𝑠𝑠 𝑃𝑃𝑟𝑟 ∗ (𝐶𝐶𝐶𝐶𝐶𝐶1 + 𝐶𝐶𝐶𝐶𝐶𝐶2 + 𝐶𝐶𝐶𝐶𝐶𝐶3+. . . +𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙)                        (10) 
𝑁𝑁𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑖𝑖𝑎𝑎𝑙𝑙𝑟𝑟 = 𝑁𝑁𝑏𝑏𝑃𝑃 ∗ 𝑜𝑜𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃𝑖𝑖𝑎𝑎𝑙𝑙𝑟𝑟)                               (11) 
𝑁𝑁𝑏𝑏𝑖𝑖𝑃𝑃𝑏𝑏𝑃𝑃𝑙𝑙𝑖𝑖𝑟𝑟𝑃𝑃𝑟𝑟 = 𝑁𝑁𝑏𝑏𝑃𝑃 ∗ 𝑜𝑜𝑏𝑏𝑖𝑖𝑃𝑃𝑏𝑏𝑃𝑃𝑙𝑙𝑖𝑖𝑟𝑟𝑃𝑃𝑟𝑟)         (12) 
 
where: 

N: predicted  
Rs:  predicted average crash frequency of a specific road segment 
Cr : calibration factor for road segments developed for a specific geographical location  
Nbr : predicted average crash frequency of a specific road segment (excluding vehicle-pedestrian 
and vehicle-bicycle collisions)  
Npedestrians: predicted average crash frequency of vehicle-pedestrian collisions for a specific road 
segment  
Nbicyclists: predicted average crash frequency of vehicle-bicycle collisions for a specific road 
segment  
Nspf rs: predicted total average crash frequency for road segment base conditions (excluding 
vehicle-pedestrian and vehicle-bicycle collisions)  
CMF1, . . ., CMFn = crash modification factors for road segments 
Nbrmv : predicted average crash frequency of multiple-vehicle non-driveway collisions for base 
conditions  
Nbrsv: predicted average crash frequency of single-vehicle crashes for base conditions 
Nbrdwy: predicted average crash frequency of multiple-vehicle driveway collisions for base 
conditions  
L: length of roadway segment (miles) 
AADT: average annual daily traffic volume (vehs/day) on the road segment  

                                                            
2 A CMF of greater than one indicates an increase in predicted crash frequency attributable to the non-base 
jurisdiction specific conditions; a CMF less than one represents reduction in crash frequency related to the base 
conditions (2).  
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As mentioned earlier, the HSM (2010) SPFs are applicable for road segments that do not exceed the 
maximum AADT limit. The maximum AADT limit for 2U, 4D, and 5T road segments of urban and suburban 
arterials are 32600, 66000, and 53800 vehicles per day, respectively (HSM 2010). 
While a and b are the regression coefficients (for total crashes) as given in Table 5: 
 

Table 5. Regression Coefficients for Urban and Suburban Arterials SPFs (HSM 2010) 

Road Type 
For Multiple vehicle non-driveway collisions For single-vehicle collisions 

A B a b 
2U -15.22 1.68 -5.47 0.56 
3T -12.40 1.41 -5.74 0.54 
4U -11.63 1.33 -7.99 0.81 
4D -12.43 1.36 -5.05 0.47 
5T -9.70 1.17 -4.82 0.54 

 
After the predicted crash frequency (for local conditions) for rural multilane highways and urban and 
suburban arterials is calculated, the following equation is used to compute the calibration factor for these 
roadway facilities: 

𝐶𝐶𝑜𝑜 =
∑𝑂𝑂𝑛𝑛𝑑𝑑𝑒𝑒𝑛𝑛𝑑𝑑𝑒𝑒𝑑𝑑 𝐶𝐶𝑛𝑛𝛴𝛴𝑑𝑑ℎ𝑒𝑒𝑑𝑑

∑𝐴𝐴𝑑𝑑𝐴𝐴𝑛𝑛𝑑𝑑𝛴𝛴𝑒𝑒𝑑𝑑 𝑃𝑃𝑛𝑛𝑒𝑒𝑑𝑑𝑑𝑑𝑃𝑃𝛴𝛴𝑒𝑒𝑑𝑑 𝐶𝐶𝑛𝑛𝛴𝛴𝑑𝑑ℎ𝑒𝑒𝑑𝑑
=
𝑁𝑁𝑜𝑜𝑏𝑏𝑟𝑟𝑃𝑃𝑃𝑃𝑏𝑏𝑃𝑃𝑃𝑃

𝑁𝑁
 

(13) 

 
where: 

Cf: Calibration factor 
𝑁𝑁𝑜𝑜𝑏𝑏𝑟𝑟𝑃𝑃𝑃𝑃𝑏𝑏𝑃𝑃𝑃𝑃: Observed crash frequency in the study period 
𝑁𝑁: Adjusted predicted crash frequency in the local jurisdiction  

 
The calibration factor (Cf) in Eq. 13 can be multiplied with the HSM base conditions SPF of rural multilane 
highways (i.e., Eq. 3) and urban and suburban arterials (i.e., Eq. 6) for predicting rural multilane highways 
and urban and suburban arterials road segment crashes in Tennessee, accounting for differences in crash, 
traffic, and roadway specific characteristics between the HSM and the TN-specific data.  
 
2.4. Tennessee-specific safety performance functions 
In addition to calibrating the HSM SPFs for a specific roadway type of urban and suburban arterials or 
multilane highways, when enough data are available, it is recommended that users develop jurisdiction-
specific SPFs (1). Developing state-specific SPFs can help in network screening and evaluation of 
engineering treatments, at a site and/or project level.  
 
Typically, state-specific SPFs are estimated using only AADT information for each segment as such data 
are easily available (7). However, in this study, Tennessee-specific SPFs are estimated using detailed 
information about road segments, such as AADT, segment length, and roadway geometric characteristics 
(as shown in the Data Collection section) for various types of urban and suburban arterials and rural 
multilane highways. While considering the discrete non-negative nature of crashes, we apply fixed-
parameter count data models considering different distributions, i.e., the Poisson and negative binomial. 
For a detailed discussion, please refer to Appendix A. While developing TN-specific SPFs, we apply both 
the Poisson and Negative binomial regression considering which are discussed in detail in the subsequent 
section. 

In order to develop TN-specific SPFs, we consider the functional form (as shown in Equation 14 and 15) 
including all key correlates of the average five-year crash frequency using both the fixed-parameter the 
Poisson and fixed-parameter Negative Binomial regression techniques (2; 5; 8; 9): 



 
 

16 
 

𝛴𝛴𝑛𝑛 (𝑁𝑁𝐴𝐴𝑇𝑇−𝑆𝑆𝑆𝑆𝑆𝑆)  = 𝛽𝛽𝑜𝑜 + �𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖

𝑆𝑆

𝑖𝑖=1

 
(14) 

A re-arrangement of Equation 14 then predicts the number of crashes for the study time period, as: 
 

𝑁𝑁𝐴𝐴𝑇𝑇−𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑒𝑒𝑒𝑒𝑒𝑒[𝛽𝛽𝑜𝑜+∑ 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖𝑃𝑃
𝑖𝑖=1 ]  (15) 

 
where 𝑋𝑋𝑖𝑖  is a matrix of explanatory factors such as AADT, segment length, lane width, shoulder width, and 
other factors, and 𝛽𝛽𝑖𝑖 is a column-vector of parameter estimates associated with each of the variables in 
matrix 𝑋𝑋𝑖𝑖. Model 1 refers to SPF based on the Poisson regression whereas model 2 refers to SPF based on 
negative binomial regression. This functional form is also widely used by researchers for modeling crash 
frequencies, and as such is also used in the current study (5; 10-13).  
 
In summary, the following models are considered for various roadway types of rural multilane (i.e., 4D 
and 4U segments) and urban and suburban arterials (i.e., including 2U, 3T, 4D, 4U, and 5T segments), 
based on different count data distributional assumptions. 
 

● Model 1: TN SPF the Fixed-Parameter Poisson SPF 
● Model 2: TN SPF the Fixed-Parameter Negative Binomial SPF  

2.4.1. Goodness of Fit Measures 

The goodness of fit measures for a particular econometric model describes how well the estimated model 
fits the data at hand. In essence, it describes the discrepancies between the observed and predicted values 
of crashes. In this analysis, we use log-likelihood at convergence, McFadden R-squared, Akaike 
Information Criteria (14), and Bayesian Information Criteria (15) to compare and evaluate the statistical 
adequacy (fit) of all estimated models. For mathematical formulations of the aforementioned criteria, 
interested readers can refer to standard statistical texts (14; 15). A lower value of AIC and BIC indicates a 
relatively better model. As the number of estimated parameters affect AIC and BIC, it effectively 
discourages overfitting of crash data by penalizing the addition of undesirable parameters (9).  

3. FINDINGS: DESCRIBING THE DATA 
 
3.1. Descriptive Statistics 
The descriptive statistics of key variables for different types of rural multilane highways and urban and 
suburban arterials are briefly discussed in the subsequent subsections. Importantly, the rural multilane 
highways include four-lane divided (4D) and four-lane undivided (4U) road segments. While the urban and 
suburban arterials include two-lane undivided (2U), three-lane including 2WLTL (3T), four-lane divided 
(4D), four-lane undivided (4U), and five-lane (5T) including 2WLTL road segments. 

3.1.1. Descriptive Statistics - Rural Multilane Highways 

Table 6 captures the summary statistics for the key variables for both 4D and 4U rural highways in 
Tennessee. The mean of five-year crashes (rounded to the nearest integer) for 4D and 4U segments of 
rural highways is 1.339 and 2.555 with standard deviations of 1.995 and 5.601, respectively, revealing 
over-dispersion in both the cases (Table 6).  
 
The mean value for an average five years AADT (in 1000s) and segment length for 4D segments of 
multilane highways are 8.137 (in thousands) and 0.669 miles, respectively (Table 6). On 4U segments of 
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rural multilane highways, the mean value of average five years AADT (in thousands) and segment length 
are 6.940 (in thousands) and 0.420 miles, respectively (Table 6). For other key variables, associated with 
4D and 4U segments of rural multilane highways, which were used in the analyses, please refer to Table 
6. The data were error checked by the authors for consistency.  
 

Table 6. Descriptive statistics of key variables (4D and 4U Multilane Highways) 

Variable 
Obs. Mean Std. Dev. Min Max 

4D Segments of Rural Multilane Highways 
Average 5 Year Crashes (rounded to nearest integer) 271 1.339 1.995 0 18.00 
Segment length (miles) 271 0.669 0.801 0.100 4.80 
Average annual daily traffic (AADT) in 1000s 271 8.137 4.591 0.489 27.08 
Inner shoulder width (in feet) 271 3.782 1.235 0 8.00 
Speed limit (miles per hour) 271 56.60 8.350 30.00 70.00 

 4U Segments of Rural Multilane Highways 
Average 5 Year Crashes (rounded to nearest integer) 81 2.555 5.601 0 39 
Segment length (miles) 81 0.420 0.536 0.100 2.50 
Average annual daily traffic (AADT) in 1000s 81 6.940 4.298 0.634 31.64 
Presence of rumble strip along outer shoulder (1/0) 81 0.2712 0.447 0 1.00 

3.1.2. Descriptive Statistics - Urban and Suburban Arterials 

The descriptive statistics of key variables used in the development of Tennessee-specific SPFs for two-lane 
(2U), three-lane including 2WLTL (3T), four-lane divided (4D), four-lane undivided (4U), and five-lane 
including 2WLTL segments of urban and suburban arterials are presented in Table 7. Since the response 
variable considered in this study is the five-year average crash frequency (rounded to the nearest integer), 
summary statistics for the five-year average crash frequency are only presented for the sake of clarity and 
simplicity (Tables 7). Statistics reveal that the mean five-year average frequency (rounded to the nearest 
integer) on 2U, 3T, 4D, 4U, and 5T segments of urban and suburban arterials is 4.128, 5.800, 5.471, 10.037, 
and 11.019, respectively (Table 7). The five-year average crashes indicate that the 5T, 4U, and 3T segments 
experience the most crashes among all five types of urban and suburban arterials (Table 7). This can be 
due to the existence of the shared left turning lane (2WLTL) or simple physically undivided traffic (i.e., on 
4U segments) increasing crash risk as inappropriate gap selection by left-turning vehicles increases 
potential conflict for through traffic. 

Based on the final datasets, the mean segment length of 2U, 3T, 4D, 4U, and 5T roadway segments of 
urban and suburban arterials are 0.532, 0.303, 0.363, 0.2454, and 0.339 miles, respectively (Table 7). 
Considering our final datasets, the mean AADT (in thousands of vehicles per day) on 2U, 3T, 4D, 4U, and 
5T roadways segments of urban and suburban arterials is 7.410, 11.71, 20.041, 15.203, and 19.367, 
respectively (Table 7). Moreover, it can be seen that per the HSM (2010) guidelines, maximum values of 
AADT  on 2U, 3T, 4D, 4U, and 5T segments of urban and suburban arterials are found to be (in thousands 
of vehicles per day) 24.155, 26.473, 64.780, 36.981, and 51.644, respectively (Table 7). These maximum 
values of ADDT on each roadway type of urban and suburban arterials are within the range recommended 
by the HSM (2010) (for detail, please refer to Table 3). Descriptive statistics of other important key 
correlates of five-year crash frequency on each of the five types of urban and suburban arterials are 
presented in Table 7. It should be noted that we present the descriptive statistics of only key variables 
which showed a significant correlation with average five-year crash frequency on each roadway type of 
urban and suburban arterials (Table 7). 
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Table 7. Descriptive Statistics of Key Variables (Various Types of Urban and Suburban Arterials) 
Variable Obs. Mean Std. Dev. Min Max 

2U Urban and Suburban Arterials 
Average 5 Year Crashes (rounded to nearest integer) 234 4.128 6.830 0 77 
Segment length (miles) 234 0.532 0.483 0.100 3.145 
Average annual daily traffic (AADT) in 1000s 234 7.410 3.868 1.288 24.15 
Number of minor commercial driveways per mile 234 0.162 0.531 0 4.00 
Number of major industrial/institutional driveways per mile 234 0.247 0.633 0 4.00 
Speed limit (mile per hour) 234 41.410 8.385 25 55 

3T Urban and Suburban Arterials 
Average 5 Year Crashes (rounded to nearest integer) 80 5.800 9.187 0 62.00 
Segment length (miles) 80 0.303 0.281 0.100 1.703 
Average annual daily traffic (AADT) in 1000s 80 11.71 5.915 0.969 26.473 
Number of major commercial driveways per mile 80 0.162 0.462 0 3.00 
Number of minor commercial driveways per mile 80 0.550 1.241 0 7.00 

4D Urban and Suburban Arterials 
Average 5 Year Crashes (rounded to nearest integer) 278 5.471 9.854 0 130 
Segment length (miles) 278 0.362 0.390 0.10 2.230 
Average annual daily traffic (AADT) in 1000s 278 20.041 10.610 2.706 64.78 
Number of major commercial driveways per mile 278 0.345 0.928 0 6 
Median width (in feet) 278 27.687 14.113 2 70 
Inner shoulder width (in feet) 278 2.622 2.086 0 9 
Presence of rumble strips along inner shoulder (1/0) 278 0.273 0.446 0 1 

4U Urban and Suburban Arterials 
Average 5 Year Crashes (rounded to nearest integer) 80 10.037 16.731 0 98 
Average annual daily traffic (AADT) in 1000s 80 15.203 8.148 2.772 36.981 
Segment length (miles) 80 0.245 0.162 0.1 0.955 
Number of minor commercial driveways per mile 80 0.762 1.224 0 5 
Number of major industrial/institutional driveways per mile 80 0.375 0.700 0 4 
Speed limit (miles per hour) 80 38.625 6.559 30 55 

5T Urban and Suburban Arterials 
Average 5 Year Crashes (rounded to nearest integer) 304 11.019 13.976 0 80 
Segment length (miles) 304 0.3397 0.2788 0.10 1.809 
Average annual daily traffic (AADT) in 1000s 304 19.367 8.948 3.475 51.64 
Number of minor commercial driveways per mile 304 0.8651 1.6263 0 12 
Number of major industrial/institutional driveways per mile 304 0.4605 0.9361 0 7 
Number of minor industrial/institutional driveways per mile 304 1.2861 1.8438 0 11 
Offset to roadside fixed objects (in feet) 304 14.266 8.1882 0 30 

 
 
3.2. Crash rates by vehicles miles traveled (VMT) and segment length 
3.2.1. Crash rates by VMT and segment length - Rural Multilane Highways 

The crash rate for the entire state and each region (please refer to Appendix B) are computed using both 
VMT and segment length. Statistics reveal that the mean crash rate per 100 million VMT on 4U segments 
of rural multilane highways is 260.467, which is 2 times the crash rate (130.028) on 4D segments of rural 
multilane highways (Table 8). This indicates that the absence of physical media separating opposing traffic 
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is important in reducing the chance of a crash (Table 8). Region 3 has the highest crash rate on 4D 
segments while Region 2 has the highest crash rate on 4U segments of the rural multilane highways in 
Tennessee (Table B1 in Appendix B). On the other hand, Region 2 (118.87 crash rate per 100 million VMT) 
was found to have the lowest crash rate on 4D segments while Region 3 (109.79 crash rate per 100 million 
VMT) was found to have the lowest crash rate on 4U segments of rural multilane highways in Tennessee 
(TABLE B1 in Appendix B). 
 

Table 8. Crash Rates by VMT and Segment Length (Rural Multilane Highways) 
Area Crash Rate per 100 Million VMT Crash Rate per mile of roadway per year 

N Mean Std. Dev. Min Max N Mean Std. Dev. Min Max 
Four Lane Divided 
(4D) (All Regions) 271 130.028 221.7824 0 1700.21 271 2.8722 4.0321 0 41.8181 

Four Lane Undivided 
(4U) Rural Highways 
(All Regions) 

81 260.467 419.6564 0 2591.16 81 6.0456 9.0053 0 57.5667 

Notes: (*) The high maximum crash rates (as indicated by “max” column) are for very short segments i.e., 
0.10 𝑛𝑛𝑑𝑑𝛴𝛴𝑒𝑒𝑑𝑑 with a low number of crashes, N is the sample size; Std. Dev. is the standard deviation.  

3.2.2. Crash rates by VMT and segment length - Urban and Suburban Arterials 

The crash rate per 100 million VMT and per mile of segment length per year for five different types of 
urban and suburban arterials including 2U, 3T, 4D, 4U, and 5T segments are summarized in Table 9. The 
crash rate for both overall Tennessee (Table 9) and each of the four regions (please refer to Table B.2 in 
Appendix B) are computed. Our analyses reveal that the highest crash rate (769.77) occurs on 4U 
segments of the urban and suburban arterials, followed by 3T and 5T segments where the value of crashes 
per 100 million VMT were 527.89 and 493.10, respectively (Table 9). Based on the computed crash rate 
for 4U road segments of urban and suburban arterials, Region 3 is found to be with the highest crash rate 
at 1049.45 crashes per 100 million VMT, while Region 1 shows the lowest crash rate (i.e., 498.59) for 4U 
segments (Table B.2 in Appendix B). Region 2 had the highest crash rate on 3T segments of urban and 
suburban arterials (709.74), while Region 1 has the lowest crash rate of 321.12 among the four regions in 
Tennessee of this arterial type (Table B.2 in Appendix B). Region 3 and Region 4 are respectively the high 
and low crash regions for 4D segments of urban and suburban arterials (Table B.2 in Appendix B). For 5T 
segments, Region 2 is noteworthy as the value of the crash rate per 100 million VMT is found to be 583.06, 
which is the highest across all the four regions (Table B.2 in Appendix B). For 2U segments of urban and 
suburban arterials, Region 1 and Region 4 are found to have the highest and lowest crash rate per 100 
million VMT, respectively (Table B.2 in Appendix B). 
 

Table 9. Crash Rates by VMT and Segment Length (Urban and Suburban Arterials) 
Arterial type (All Regions) Crash Rate per 100 million VMT Crash Rate per mile of roadway per year 

N Mean Std. Dev. Min Max N Mean Std. Dev. Min Max 
Two Lanes Undivided (2U) 234 339.99 358.44 0 2597.76 234 9.36 13.63 0 105.71 
Three Lanes (3T) 80 527.89 641.12 0 3884.28 80 22.74 32.85 0 221.11 
Four Lanes Divided (4D) 278 312.99 564.35 0 4949.82 278 25.31 49.02 0 370 
Four Lanes Undivided (4U) 80 769.77 1227.85 0 7528.29 80 43.47 76.42 0 515.78 
Five Lanes (5T) 304 493.10 508.22 0 4119.67 304 38.80 50.43 0 445.61 
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4. FINDINGS: CALIBRATION FACTOR RESULTS FOR 
TENNESSEE 
The procedures applied for computing the calibration factors for rural multilane highways and urban and 
suburban arterials are discussed in section 2.3.2.1. and 2.3.2.2., respectively. We calculated two types of 
calibration factors for each type of the rural multilane highways (4D and 4U segments) and urban and 
suburban arterials (2U, 3T, 4D, 4U, and 5T segments): 
 

● Base Calibration Factors (Cfbase): We estimated the base conditions calibration factors (Cfbase) while 
applying the HSM SPF i.e., Eq. 3 for rural multilane highways and Eq. 6 for urban and suburban 
arterials mainly using AADT and segment length. We then calculated the mean calibration factor 
for each of the facility types by simply dividing their observed crashes over corresponding 
predicted crashes. It is important to mention that we consider all crash modification factors as 1, 
assuming that rural multilane highway segments meet the HSM (2010) base conditions. 

● Adjusted Calibration Factors (Cfadj): We estimated the adjusted calibration factors (Cfadj) while 
applying the Equation 4 using AADT and segment length as well as incorporating the CMFs for 
cases when Tennessee-specific road geometry deviates from the HSM default values. A similar 
procedure was followed for urban and suburban arterials as discussed in section 2.3.2.2. We then 
calculated the mean calibration factors (Cfadj) while dividing the observed crashes over the 
adjusted predicted number of crashes (Equation 13). 

The calibration factors (for both case conditions and adjusted conditions) are estimated for the whole 
state (Tennessee including four regions) as well as separately for each of the four regions in Tennessee. 
While accounting for temporal variations, we estimated the calibration factors using five-year average 
crash data, as well as separately for each of the five years (2013-2017). The complete calibration 
procedure was conducted using statistical programming software STATA, and the codes are available from 
the authors. The detailed results (i.e., how calibration factors vary with time and space) for each of the 
roadway facilities are provided in Appendix C. In order to compare the calibration factors of each roadway 
type in Tennessee with other states, the overall state calibration factors are illustrated in the following 
figures. 

4.1. Calibration factors results: Rural Multilane Highways 
The adjusted calibration factor (Cfadj) for 4D segments of rural multilane highways using five-year average 
crash data is 1.475, indicating that the actual crashes in Tennessee are at least 0.475 times higher than 
the predicted crashes computed after adjusting for the Tennessee-specific conditions (Table 10). The 
comparison of calibration factors (after accounting for the local adjustments) for 4D segments of rural 
multilane highways in Tennessee with other states is illustrated in Figure 10. It is noticeable that 4D 
segments of rural multilane highways have greater potential for improvement compared to other states 
(Figure 10). Moreover, the comparison of Cfbase and Cfadj for the whole state of Tennessee and each of the 
four regions is illustrated in Figure 11 and Figure 12, respectively. Several insights can be drawn from the 
figures below: 

● The average five-year calibration factor (assuming TN roadway segments meet the HSM base case 
conditions) is 1.445, with year-wise calibration factors ranging from 1.404 to 1.488 (Figure 11). 
After accounting for the CMFs in calibration factor calculations, the average five-year calibration 
factor for all regions is still greater than the national average (1.475) with year-wise calibration 
factors ranging between 1.433 and 1.519 (Figure 11). It was interesting to notice that even after 
accounting for TN-specific conditions, the Cfadj was almost like the Cfbase which was unexpected as 
Cfadj was expected to be lower than Cfbase. 
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● Region 3 appears to be the least risky with an average five-year calibration factor (Cfadj) equaling 
1.369, with yearly calibration factors varying between 1.192 and 1.615 (Figure 12). 

 

Table 10. Summary of Calibration Factors in Tennessee for 4D Rural Multilane Highways 

Calibration Factors (Cf) Statewide 
(N = 271) 

Region 1 
(N = 44) 

Region 2 
(N = 78) 

Region 3 
(N = 41) 

Region 4 
(N = 108) 

Base Cf (Cfbase) 1.445 1.571 1.388 1.338 1.489 
Modified Cf (Cfadj) 1.475 1.601 1.421 1.369 1.515 

Notes: All reported calibration factors for Tennessee are the average of five years’ calibration 
factors (See Appendix C for details). 

  

 
Figure 10. Comparison of Calibration Factor (Cf) for 4D segments of Rural Multilane Highways in 

Tennessee with Other States (7; 16-23) 
 

 
Figure 11. Base Case (Cfbase) and Adjusted (Cfadj) Calibration Factors for All Regions (4D Segments of 

Rural Multilane Highways) 
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Figure 12. Base Case (Cfbase) and Adjusted (Cfadj) for Calibration Factors 4D Segments of Rural Multilane 

Highways: Region Comparison 
Note: The scales (i.e., along Y-axis) for Cfbase and Cfadj for various regions illustrated in Figure 12 are different 
depending on their calibration results and must be read carefully. 
 
The calibration factor for 4U segments of rural multilane highways (for Tennessee as a whole and each of 
the four regions) while using five-year average crash data after accounting for TN-specific conditions are 
presented in Table 11. The comparison of calibration factors (after applying local adjustments) for 4U 
segments of rural multilane highways in Tennessee with other states is illustrated in Figure 13. Moreover, 
the comparison of Cfbase and Cfadj for 4U segments of rural multilane highways for the whole state of 
Tennessee and each of the four regions is illustrated in Figure 14 and Figure 15 respectively. 

● The average five-year calibration factor for the 4U rural multilane highways (assuming TN 
roadway segments meet the HSM base case conditions) is 2.309, with year-wise calibration 
factors ranging between 2.043 and 2.538 (Figure 14). After accounting for the CMFs in calibration 
factor calculations, the average five-year calibration factor for all regions is still greater than the 
national average (2.257) with year-wise calibration factors ranging between 1.996 and 2.482 
(Figure 14). It is interesting to notice that even after accounting for TN-specific conditions, the 
Cfadj was like the Cfbase which was expected otherwise (Cfadj was expected to be lower than Cfbase). 

● However, based on the average five-year Cfadj, Region 1 and Region 3 are the riskiest and least 
risky regions, respectively (Figure 15). 

 

Table 11. Summary of Calibration Factors in Tennessee for 4U Rural Multilane Highways 
Calibration Factors (Cf) Statewide 

(N = 81) 
Region 1 
(N = 20) 

Region 2 
(N = 14) 

Region 3 
(N = 19) 

Region 4 
(N = 28) 

Base Cf (Cfbase) 2.309 2.750 2.505 1.127 2.658 
Modified Cf (Cfadj) 2.257 2.602 2.480 1.174 2.587 

Notes: All reported calibration factors for Tennessee are average of five-year calibration factors (See 
Appendix C for details).  
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Figure 13. Comparison of Calibration Factor (Cfadj) for 4U segments of Rural Multilane Highways in 

Tennessee with Other States (16; 17; 19; 23) 
 

 
Figure 14. Base Case (Cfbase) and Adjusted (Cfadj) Calibration Factors for All Regions (4U Segments of 

Rural Multilane Highways) 
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Figure 15. Base Case (Cfbase) and Adjusted (Cfadj) for Calibration Factors 4U Segments of Rural Multilane 

Highways: Region Wise Comparison 
Note: The scales (i.e., along Y-axis) for Cfbase and Cfadj for various regions illustrated in Figure 15 are different 
depending on their calibration results and must be read carefully.
 
 
4.2. Calibration factors results: Urban and Suburban Arterials 
The calibration factors (after accounting for the local adjustments), while using five-year average crash 
data, for 2U, 3T, 4D, 4U, and 5T segments of urban and suburban arterials are found to be 4.714, 5.283, 
4.126, 7.633, and 3.543, respectively (Tables 16-20). This indicates that the actual number of crashes on 
2U, 3T, 4D, 4U, and 5T segments of urban and suburban arterials are at least 3.714, 4.283, 3.126, 6.633, 
and 2.543 times higher than those estimated by the HSM predictive models after accounting for local 
conditions, respectively. These findings indicate that the 2U, 3T, 4D, 4U, and 5T segments of urban and 
suburban arterials experience a significantly higher number of crashes compared to the national average 
(i.e., the states from which data were used in developing the HSM predictive models). Similarly, all five 
types of urban and suburban arterials road segments are relatively riskier in Tennessee than in other 
states, as the observed number of crashes is significantly higher than those predicted by the HSM 
predictive models (after accounting for the local adjustments), reflecting a greater potential for 
improvement (Figure 16, Figure 19, Figure 22, Figure 25, and Figure 28). 
 
4.2.1. 2U Urban and Suburban Arterials 
Several insights can be drawn from the figures of calibration factors of the 2U segments of urban and 
suburban arterials below: 

● The average five-year calibration factor (assuming TN roadway segments meet the HSM base case 
conditions) is 4.887, with year-wise calibration factors ranging between 4.739 and 5.055 (Figure 
17). After accounting for the CMFs in calibration factor calculations, the average five-year 
calibration factor for all regions is significantly reduced to 4.714. This indicates that after 
accounting for TN-specific conditions, the predicted number of crashes is relatively closer to the 
actual number of crashes on 2U segments of urban and suburban arterials in Tennessee which is 
otherwise not the case (i.e., in case of base calibration factors). After accounting for TN-specific 
conditions, the mean Cfadj is found to be 4.714 with year-wise values ranging between 4.571and 
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4.877 (Figure 17). 
● Considering the Cfadj for 2U segments of urban and suburban arterials, Region 2 appears to be the 

least risky with an average five-year calibration factor (Cfadj) equaling 4.185 and yearly calibration 
factors varying between 3.848 and 5.349 (Figure 18). 
 

Table 12. Summary of Calibration Factors in Tennessee for 2U Urban and Suburban Arterials 
Tennessee Calibration Factors for Two-lane Urban Suburban Arterials 

Calibration Factors (Cf) Statewide 
(N = 234) 

Region 1 
(N = 67) 

Region 2 
(N = 38) 

Region 3 
(N = 88) 

Region 4 
(N = 41) 

Base Cf (Cfbase) 4.887 4.715 4.540 5.142 4.440 
Modified Cf (Cfadj) 4.714 4.465 4.185 5.079 4.226 

Notes: All reported calibration factors for Tennessee are the average of five years of calibration factors 
(See Appendix C for details).  

 
 

 
Figure 16. Comparison of Calibration Factor (Cfadj) for 2U segments of Urban and Suburban Arterials in 

Tennessee with Other States (7; 16; 17; 19; 20; 22; 23) 
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Figure 17. Base Case (Cfbase) and Adjusted (Cfadj) Calibration Factors for All Regions (2U Segments of 

Urban and Suburban Arterials) 
 

 
Figure 18. Base Case (Cfbase) and Adjusted (Cfadj) for Calibration Factors 2U Segments of Urban and 

Suburban Arterials: Region Wise Comparison 
Note: The scales (i.e., along Y-axis) for Cfbase and Cfadj for various regions illustrated in Figure 18 are different 
depending on their calibration results and must be read carefully. 

 
4.2.2. 3T Urban and Suburban Arterials   
Several insights can be drawn from the figures of calibration factors of the 3T segments of urban and 
suburban arterials below: 

● The average five-year calibration factor (assuming TN roadway segments meet the HSM base case 
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conditions) is 5.920, with year-wise values ranging between 5.711 and 6.112 (Figure 20). After 
accounting for the CMFs in calibration factor calculations, the average five-year calibration factor 
for all regions is significantly reduced to 5.823. This indicates that after accounting for TN-specific 
conditions, the predicted number of crashes is closer to the actual number of crashes on 3T 
segments of urban and suburban arterials in Tennessee which is otherwise not the case (i.e., in 
case of base case calibration factors). After accounting for TN-specific conditions the mean Cfadj is 
found to be 5.823, with year-wise values ranging between 5.617 and 6.006 (Figure 20). 

● However, the average five-year Cfadj for 3T segments suggests that the number of actual crashes 
on 3T segments of urban and suburban arterials in Tennessee is 4.823 times higher than what is 
predicted by the locally calibrated the HSM predictive models. 

● Considering the Cfadj for 3T segments of urban and suburban arterials, Region 1 appears to be the 
least risky with an average five-year calibration factor (Cfadj) equaling 3.130, while Region 4 is a 
risky region with an average five years Cfadj value equal to 10.411 (Figure 21). 
 

Table 13. Summary of Calibration Factors in Tennessee for 3T Urban and Suburban Arterials 
Tennessee Calibration Factors for Three-lane (3T) including 2WLTL Urban Suburban Arterials 
Calibration Factors (Cf) Statewide 

(N = 80) 
Region 1 
(N = 22) 

Region 2 
(N = 16) 

Region 3 
(N = 34) 

Region 4 
(N = 8) 

Base Cf (Cfbase) 5.920 3.201 8.811 6.563 11.085 
Modified Cf (Cfadj) 5.823 3.130 8.921 6.468 10.411 

Notes: All reported calibration factors for Tennessee are the average of five years of calibration 
factors (See Appendix C for details).  

Table 13 shows that average Cadj for 3T segments of urban and suburban arterials in Tennessee is 5.82 (N 
= 80) which is relatively higher than other states in the US (Figure 19). This prompted us to carry out checks 
to explore this relatively high Cadj for 3T segments. The checks include: (i) confirming crash frequency, 
roadway geometry, and AADTs in E-TRIMS and TDOT Traffic History Application, and (ii) conducting outlier 
analysis based on various factors, especially Crash Rate per 100 million VMT, i.e., exploring high values in 
the sample. Rechecking the data for the random sample of 3T urban and suburban arterials did not 
indicate any inaccuracies based on E-TRIMS and Traffic History Application records. On the basis of crash 
rates, we found that four segments of 3T urban and suburban arterials (See Table C.71 in Appendix C) had 
relatively high Crash Rates per 100 million VMT (i.e., rate > 2000). Note that the average Crash Rate per 
100 million VMT for 3T segments (N = 80) was found to be 527.89 (Table 9). After removing the four 
outlying segments, the average Cadj for 3T segments of urban and suburban arterials drops from 5.82 (N = 
80) to 5.01 (N = 76). While removing the segments with high crash rates reduces the average value of Cadj, 
we decided to keep the four segments in the sample because (i) their accuracy (in terms of geometry and 
locations) was rechecked and they were found to be suitable segments, (ii) they were randomly selected 
(using 90 percent confidence level criteria to ensure an appropriate representation of the 3T segment 
population), and (iii) while the high values of the four segments were higher than the three-sigma limit, 
they were still within the six-sigma limits.  
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Figure 19. Comparison of Calibration Factor (Cfadj) for 3T segments of Urban and Suburban Arterials in 

Tennessee with Other States (7; 16; 17; 19; 20; 23) 
 
 

 
Figure 20. Base Case (Cfbase) and Adjusted (Cfadj) Calibration Factors for All Regions (3T Segments of 

Urban and Suburban Arterials) 
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Figure 21. Base Case (Cfbase) and Adjusted (Cfadj) for Calibration Factors 3T Segments of Urban and 

Suburban Arterials: Region Wise Comparison 
Note: The scales (i.e., along Y-axis) for Cfbase and Cfadj for various regions illustrated in Figure 21 are different 
depending on their calibration results and must be read carefully. 

 
4.2.3. 4D Urban and Suburban Arterials 
Several insights can be drawn from the figures of calibration factors of the 4D segments of urban and 
suburban arterials below: 

● The average five-year calibration factor (assuming TN roadway segments meet the HSM base case 
conditions) is 4.126, with year-wise values ranging between 3.940 and 4.413 (Figure 23). After 
accounting for the CMFs in calibration factor calculations, the average five-year calibration factor 
for all regions is still greater than the national average (4.459) with year-wise calibration factors 
ranging between 4.257 and 4.769 (Figure 23). It was interesting to notice that even after 
accounting for TN-specific conditions, the Cfadj was close to Cfbase which was expected, otherwise, 
Cfadj was expected to be lower than Cfbase. 

● However, the average five-year Cfadj for 4D segments suggests that the number of actual crashes 
on 4D segments of urban and suburban arterials in Tennessee is 3.459 times higher than what is 
predicted by the locally calibrated the HSM predictive models. 

● Considering the Cfadj for 4D segments of urban and suburban arterials, Region 4 appears to be the 
least risky with an average five-year calibration factor (Cfadj) equaling 3.566, while Region 3 is a 
risky region with an average five years Cfadj value equal to 6.467 (Figure 24). 

 

Table 14. Summary of Calibration Factors in Tennessee for 4D Urban and Suburban Arterials 
Tennessee Calibration Factors for Four-lane Divided (4D) Urban and Suburban Arterials 

Calibration Factors (Cf) Statewide  
(N = 278) 

Region 1 
(N = 114) 

Region 2 
(N = 41) 

Region 3  
(N = 59) 

Region 4  
(N = 64) 

Base Cf (Cfbase) 4.126 3.375 4.475 6.242 3.336 
Modified Cf (Cfadj) 4.459 3.822 4.468 6.467 3.566 

Notes: All reported calibration factors for Tennessee are an average of five years of calibration factors 
(See Appendix C for details).  
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Figure 22. Comparison of Calibration Factor (Cfadj) for 4D segments of Urban and Suburban Arterials in 

Tennessee with Other States (7; 16; 17; 19; 20; 22; 23) 
 

 
Figure 23. Base Case (Cfbase) and Adjusted (Cfadj) Calibration Factors for All Regions (4D Segments of 

Urban and Suburban Arterials) 
 

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Florida Louisiana Maryland Missouri North
Carolina

Ohio Oregon Tennessee



 
 

41 
 

 
Figure 24. Base Case (Cfbase) and Adjusted (Cfadj) for Calibration Factors 4D Segments of Urban and 

Suburban Arterials: Region Wise Comparison 
Note: The scales (i.e., along Y-axis) for Cfbase and Cfadj for various regions illustrated in Figure 24 are different 
depending on their calibration results and must be read carefully. 

 
4.2.4. 4U Urban and Suburban Arterials 
Several insights can be drawn from the findings, the calibration factors for the 4U segments of urban and 
suburban arterials (Table 19 and Figures 25-27): 

● The average five-year calibration factor (assuming TN roadway segments meet the HSM base case 
conditions) is 8.089, with year-wise values ranging between 6.829 and 9.152 (Figure 26). After 
accounting for the CMFs in calibration factor calculations, the average five-year calibration factor 
for all regions reduces to 7.633 with year-wise calibration factors ranging between 6.447 and 
8.639 (Figure 26). 

● However, the average five-year Cfadj for 4U segments suggests that the number of actual crashes 
on 4U segments of urban and suburban arterials in Tennessee is 6.633 times higher than what is 
predicted by the locally calibrated the HSM predictive models. 

● Considering the Cfadj for 4U segments of urban and suburban arterials, Region 1 appears to be the 
least risky with an average five-year calibration factor (Cfadj) equaling 5.658, while Region 2 is a 
risky region with an average five years Cfadj value equal to 11.404 (Figure 27). 

 

Table 15. Summary of Calibration Factors in Tennessee for 4U Urban and Suburban Arterials 
Tennessee Calibration Factors for Four-lane Divided (4D) Urban and Suburban Arterials 

Calibration Factors (Cf) Statewide 
(N = 80) 

Region 1 
(N = 14) 

Region 2 
(N = 16) 

Region 3  
(N = 20) 

Region 4 
(N = 30) 

Base Cf (Cfbase) 8.089 6.107 12.447 8.869 7.067 
Modified Cf (Cfadj) 7.633 6.658 11.404 8.624 6.656 

Notes: All reported calibration factors for Tennessee are an average of five years of calibration factors 
(See Appendix C for details).   

 
 
The analysis shows that the average Cadj for 4U segments of urban and suburban arterials in 
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Tennessee is 7.63 (N = 80), which is relatively high compared with other states in the US (Figure 25). To 
further investigate the reasons for high values, we performed quality control checks, which included: (i) 
rechecking crash and geometric data, and AADT in E-TRIMS and the TDOT Traffic History Application, and 
(ii) conducting outlier analysis based on various factors, specifically Crash Rate per 100 million VMT. We 
confirmed the accuracy of the data for a random sample of 4U urban and suburban arterials using E-TRIMS 
and Traffic History Application records. Referring to the crash rate, we observed that three segments of 
4U urban and suburban arterials (See Table C.72 in Appendix C) had high Crash Rates per 100 million VMT 
(i.e., rates > 3,000). Therefore, compared with the mean Crash Rate per 100 million VMT for 4U segments 
(N = 80) 769.77, these segments had relatively high rates. If the three segments are removed from the 
analysis, then the average Cadj drops to 6.09 (N = 77). Nonetheless, we decided to keep the three segments 
in the sample because (i) their accuracy (in terms of geometry and locations) was rechecked and they 
were found to be suitable segments, (ii) the segments were randomly chosen (using 90 percent confidence 
level criteria to ensure an appropriate representation of the population), and (iii) while the high values of 
the segments were higher than the three-sigma limit, they were still within the six-sigma limits. 
 

 
Figure 25. Comparison of Calibration Factor (Cfadj) for 4U segments of Urban and Suburban Arterials in 

Tennessee with Other States (7; 16; 17; 19; 20; 23) 
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Figure 26. Base Case (Cfbase) and Adjusted (Cfadj) Calibration Factors for All Regions (4U Segments of 

Urban and Suburban Arterials) 
 

 
Figure 27. Base Case (Cfbase) and Adjusted (Cfadj) for Calibration Factors 4U Segments of Urban and 

Suburban Arterials: Region Wise Comparison 
Note: The scales (i.e., along Y-axis) for Cfbase and Cfadj for various regions illustrated in Figure 27 are different 
depending on their calibration results and must be read carefully. 

 
4.2.4. 5T Urban and Suburban Arterials 
Several insights can be drawn from the figures of calibration factors of the 5T segments of urban and 
suburban arterials below: 

● The average five-year calibration factor (assuming TN roadway segments meet the HSM base case 
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conditions) for 5T segments of urban and suburban arterials in Tennessee is 3.584, with a year-
wise value ranging between 3.509 and 3.648 (Figure 29). After accounting for the CMFs in 
calibration factor calculations, the average five-year calibration factor for all regions significantly 
reduces to 3.543. This is good indication that after accounting for TN-specific conditions, the 
predicted number of crashes are relatively closer to the actual number of crashes on 5T segments 
of urban and suburban arterials in Tennessee which otherwise is not the case (i.e., in case of 
Cfbase). After accounting for TN-specific conditions, the mean CF (adjusted) is found to be 3.543 
with a year-wise value ranging between 3.470 and 3.605 (Figure 29). 

● Considering the Cfadj for 5T segments of urban and suburban arterials, Region 1 appears to be the 
least risky with the average five-year calibration factor (Cfadj) equaling 2.730 while Region 2 is a 
risky region with average five years Cfadj value equal 4.708 (Figure 30). 
 

Table 16. Summary of Calibration Factors in Tennessee for 5T Urban and Suburban Arterials 
Tennessee Calibration Factors for Five-Lane (Including 2WLTL) (5T) Urban and Suburban Arterials 

Calibration Factors (Cf) Statewide 
(N = 304) 

Region 1 
(N = 87) 

Region 2 
(N =46) 

Region 3 
(N = 119) 

Region 4 
(N = 52) 

Base Cf (Cfbase) 3.584 2.744 4.766 3.606 4.160 
Modified Cf (Cfadj) 3.543 2.730 4.708 3.551 4.110 

Notes: All reported calibration factors for Tennessee are average of five-year calibration factors (See 
Appendix C for details).  

 
 

 
Figure 28. Comparison of Calibration Factor (Cfadj) for 5T segments of Urban and Suburban Arterials in 

Tennessee with Other States (7; 16; 17; 19; 20; 23) 
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Figure 29. Base Case (Cfbase) and Adjusted (Cfadj) Calibration Factors for All Regions (5T Segments of 

Urban and Suburban Arterials 
 

 
Figure 30. Base Case (Cfbase) and Adjusted (Cfadj) for Calibration Factors 5T Segments of Urban and 

Suburban Arterials: Region Wise Comparison 
Note: The scales (i.e., along Y-axis) for Cfbase and Cfadj for various regions illustrated in Figure 30 are different 
depending on their calibration results and must be read carefully.

 
4.3. Tennessee-Specific Safety Performance Functions 
This section presents the modeling results for various types of rural multilane highways and urban and 
suburban arterials. We apply count data models based on different distributional assumptions (i.e., the 
Poisson and negative-binomial) to explore the key correlates of average five-year crash frequency. In the 
case of each of the roadway types, fixed-parameter models are estimated using different distributional 
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assumptions (i.e., the Poisson and negative binomial), and their performance is briefly discussed. All 
models were derived from a systematic process to include the most important variables (available in the 
data set) based on statistical significance, specification parsimony, and intuition. First, a series of ordinary 
least square regressions were estimated to spot correlations and patterns in the data. Next, the Poisson 
and Negative Binomial regressions were estimated. Specifically, all variables were tested, and statistically 
significant variables were retained in the final model specifications. Note that significant over-dispersion 
in the data of each of the seven roadway types (i.e., including rural multilane and urban and suburban 
arterials) were observed which is being addressed via negative binomial regression. TN-specific SPFs for 
all the seven roadway types indicate that the fixed-parameter negative binomial model shows significant 
improvement in estimation/in-sample prediction performance. In short, if negative binomial regression is 
not used to address the over-dispersion issue in the data, our results could be misleading and 
inappropriate. 

4.3.1. Modeling Results for Rural Multilane Highways 

4.3.1.1. Model Selection and Performance Comparison 
Before discussing the results of Tennessee-specific SPFs for rural multilane highways in detail, for brevity, 
we discuss the summary statistics (goodness-of-fit measures)3 of the models (based on the Poisson and 
negative binomial distribution assumptions for both 4D and 4U segments of rural multilane highways as 
shown in Table 17 and Table 18, respectively. Following (14; 25), Bayesian Information Criterion (BIC) and 
Akaike Information Criterion (AIC) can be used to evaluate competing nested and/or non-nested models. 
In the case of both 4D segments and 4U segments of rural multilane highways, Model 2 (i.e., fixed-
parameter negative binomial regression) outperforms with improved in-sample fit or estimation 
performance (i.e., having lowest AIC and BIC values) compared to their counterparts (Table 17-18). 

4.3.1.2. Modeling Results for Rural Multilane Highways 
Referring to the parameter estimates in different models, a positive sign on parameter estimate shows 
that a specific variable is positively correlated with crash frequency, and vice versa. For instance, in Model 
2 (Table 17), for 4D segments of rural multilane highways, AADT and segment length are positively 
correlated with crash frequency on 4D segments of rural multilane highways, which is consistent with 
existing safety literature. The over-dispersion parameter in the fixed-parameter negative binomial model 
is marginally significant (Table 17). However, Model 2 (i.e., fixed-parameter negative binomial model) 
outperforms with the lowest AIC (728.93) and BIC (750.54) for 4D segments of rural multilane highways. 
Hence, we discuss the estimation results for Model 2 (Table 17). 
  
As expected, the modeling results for 4D rural multilane highways suggest that AADT and segment length 
increase the average five-year crash frequency (Table 17). Importantly, the over-dispersion parameter in 
negative binomial models was found to be marginally significant (i.e., as per 90% confidence criteria) 
suggesting significant evidence of over-dispersion in the data of 4D rural multilane highways segments 
(Table 17). In Model 2 (i.e., 4D segments of rural multilane highways), increasing inner shoulder width (in 
feet) and speed limit (miles per hour) reduces crash frequency on 4D segments of rural multilane highways 
(Table 17). For instance, model 2 (the best model) suggests that a unit increase in the inner shoulder width 
                                                            
3 Note that the goodness of fit measures (such as log-likelihood at convergence and likelihood-ratio test statistic 
based on this) are presented in case of each roadway type (i.e., Table 17 and Table 18 for 4D and 4U rural multilane 
highways respectively) along with the modeling results (i.e., fixed-parameter Poisson and negative binomial models). 
Importantly, “explaining” vs “predicting” are two different dimensions for which statistical models may be estimated 
(24). While AIC is derived from a predictive viewpoint, yet it is an indicator of “in-sample” fitting capabilities of 
competing models (24). Having said this, AIC can be used to evaluate “in-sample” fits of competing models.  
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(i.e., in feet) and speed limit (miles per hour) reduces the average five-year crash frequency by 0.0951 and 
0.0138 units, respectively (Table 17). 
 

Table 17. Modeling Results: TN-Specific SPFs for 4D Rural Multilane Highways 
Variable Model 1 (Poisson) Model 2 (Negative Binomial) 

Coeff. t-stat p-value Coeff. t-stat p-value 
Average annual daily traffic (AADT) in 1000s 0.0587 5.47 <0.0001 0.0570 4.33 <0.0001 
Inner shoulder width (in feet) -0.0951 -1.99 0.0459 -0.1061 -2.17 0.0299 
Speed limit (miles per hour) -0.0138 -1.79 0.0736 -0.0164 -1.99 0.0469 
Segment length (miles) 0.7328 17.19 <0.0001 0.7992 12.74 <0.0001 
Constant 0.2074 0.453 0.6503 0.3412 0.785 0.4326 
Over-dispersion Parameter --- ----  0.1312 1.92 0.0547 
Summary Statistics 
Number of Observations 271 271 
Log Likelihood at Null -496.1177 -496.1177 
Log Likelihood at Convergence -362.2281 -358.4683 
Pseudo R-square value 0.2698 0.2774 
AIC 734.4561 728.9358 
BIC 752.4586 750.5480 

Notes: Model 1 and 2 refer to the fixed-parameter Poisson and fixed-parameter negative binomial regression, 
respectively.  
 
Referring to the SPFs for 4U segments of rural multilane highways, AADT and segment length are positively 
correlated with average five-year crash frequency, while the presence of rumble strips along the outer 
shoulder (in feet) negatively influences crash frequency on such road segments (Model 1-2 in Table 18). 
Importantly, the over-dispersion parameter in the fixed-parameter negative binomial model is found to 
be statistically significant (Table 18). The fixed-parameter negative binomial model (Model 2) outperforms 
Model 1 based on the AIC, BIC, and Pseudo R2 values, indicating a superior in-sample fit (Table 18). Model 
2 for 4U segments indicates that a unit increase in segment length (in miles) and average annual daily 
traffic (in 1000s) increases the average five-year crash frequency by 1.3730 and 0.1074 units, respectively 
(Table 18). Additionally, Model 2 suggests that the average five-year crash frequency on 4U rural multilane 
highways reduces by 1.3605 units if rumble strips exist along the outer shoulder (Table 18). 
 

Table 18. Modeling Results: TN-Specific SPFs for 4U Rural Multilane Highways 
Variable Model 1 (Poisson) Model 2 (Negative Binomial) 

Coeff. t-stat p-value Coeff. t-stat p-value 
Segment length (miles) 1.3730 7.81 <0.0001 1.3345 4.35 <0.0001 
Average annual daily traffic (AADT) in 1000s 0.1074 14.06 <0.0001 0.1293 3.84 0.0001 
Presence of rumble strip along outer shoulder (1/0) -1.3605 -4.16 <0.0001 -1.0184 -3.61 0.0003 
Constant -0.5768 -4.18 <0.0001 -0.8383 -2.81 0.0049 
Over-dispersion Parameter --- ---- --- 0.3924 2.48 0.0129 
Summary Statistics 
Number of Observations 81 81 
Log Likelihood at Null -305.4908 -305.4908 
Log Likelihood at Convergence -148.7064 -133.5979 
Pseudo R-square value 0.5132 0.5626 
AIC 305.4129 277.1957 
BIC 314.9903 289.1683 

Notes: Model 1 and Model 2 refer to the fixed-parameter Poisson and fixed-parameter negative binomial regression 
respectively.  
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4.3.2. Modeling Results for Urban and Suburban Arterials 

Random samples for each roadway types were selected to develop TN-specific SPFs for 2U, 3T, 4D, 4U, 
and 5T segments of urban and suburban arterials. Importantly, while selecting random samples, we 
considered and followed the HSM (2010) minimum sample size criteria required for calibration. These 
SPFs and all the correlates were used to understand how key factors associate with the average five-year 
crash frequency on urban and suburban arterials. Bayesian Information Criterion (BIC) and Akaike 
Information Criterion (AIC) can be used to evaluate and compare the fit of competing nested and/or non-
nested models based on in-sample predictive performance (14, 25). We develop fixed count data models 
(while considering both the Poisson and Negative Binomial distributions) for all the five types of urban 
and suburban arterials which are briefly discussed below in detail. 

4.3.2.1. 2U Segments of Urban and Suburban Arterials 
Before discussing the results of Tennessee-specific SPFs for 2U segments of urban and suburban arterials 
in detail, we discuss the summary statistics of the four models (Model 1-2) developed for 2U segments of 
the urban and suburban arterials. The Model 1 and Model 2 results suggest that significant over-dispersion 
exists in the crash data for 2U segments of urban and suburban arterials (Table 19). Importantly, Models 
2 (i.e., fixed-parameter negative binomial model) showed significant improvement (i.e., considering AIC, 
BIC, and McFadden “Pseudo” R2 values) as compared to Model 1 (the fixed-parameter Poisson) (Table 19). 
The results of the superior model (i.e., Model 2) for 2U segments of urban and suburban arterials indicate 
that the AADT and segment length are positively correlated with the average five-year crash frequency 
(Table 19). Also, it is found that increasing the speed limit reduces crash frequency on 2U segments of 
urban and suburban arterials respectively (Table 19). The Model 2 estimation indicates that a unit increase 
in the number of minor commercial and major industrial/institutional driveways per mile increases the 
five-year crash frequency by 0.2328 and 0.3864 units, respectively (Table 19). 
 

Table 19. Modeling Results: TN-Specific SPFs for 2U Urban and Suburban Arterials 
Variable Model 1 (Poisson) Model 2 (Negative Binomial) 

Coeff. t-stat p-value Coeff. t-stat p-value 
Speed limit (mile per hour) -0.0141 -3.06 0.0022 -0.0229 -2.90 0.0037 
Average annual daily traffic (AADT) in 1000s 0.1162 17.40 <0.0001 0.1391 11.19 <0.0001 
Segment length (miles) 0.7378 15.29 <0.0001 0.9731 8.22 <0.0001 
Number of minor commercial driveways per 
mile 

0.2328 4.71 <0.0001 0.2016 2.51 0.0120 

Number of major industrial/institutional 
driveways per mile 

0.3864 10.82 <0.0001 0.2774 4.15 <0.0001 

Constant 0.3398 1.69 0.0906 0.4087 1.29 0.1964 
Over-dispersion Parameter --- --- --- 0.2987 5.43 <0.0001 
Summary Statistics 
Number of Observations 234 234 
Log Likelihood at Null -968.4007 -968.4007 
Log Likelihood at Convergence -573.1299 -497.3120 
Pseudo R-square value 0.4081 0.4864 
AIC 1158.2602 1008.6242 
BIC 1178.9926 1032.8105 

Notes: In Table 19, Model 1 and Model 2 refer to the fixed-parameter Poisson and fixed-parameter negative binomial 
regression, respectively.  
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4.3.2.2. 3T Segments of Urban and Suburban Arterials 
Before discussing the results of TN-specific SPFs for 3T segments of urban and suburban arterials in detail, 
we discuss the summary statistics of the four models (Model 1-2) developed for 3T segments of the urban 
and suburban arterials. Model 2 (i.e., fixed-parameter negative binomial model) showed significant 
improvement over Model 1 with the lowest AIC and BIC values, and higher Pseudo R2 value (Table 20). 
The estimation results indicate that significant over-dispersion is present in the data as evident from a 
statistically significant over-dispersion parameter in the negative binomial model (Table 20). According to 
the results of Model 2 (superior model based on in-sample fit statistics), factors that increase the average 
five-year crash frequency include AADT, segment length, number of major commercial driveways, and 
number of minor commercial driveways residential driveways per mile (Table 20). These findings were 
expected and are consistent with the existing literature. Specifically, an increase in density of the two 
driveway types increases traffic interaction with the through traffic on 3T segments which consequently 
increases the average five-year crash frequency (Table 20).  

Table 20. Modeling Results: TN-Specific SPFs for 3T Urban and Suburban Arterials 
Variable Model 1 (Poisson) Model 2 (Negative 

Binomial) 
Coeff. t-stat p-value Coeff. t-stat p-value 

Average annual daily traffic (AADT) in 1000s 0.0862 9.83 <0.0001 0.0982 3.98 0.0001 
Segment length (miles) 0.7628 6.17 <0.0001 0.9823 2.13 0.0332 
Number of major commercial driveways per mile 0.2840 4.27 <0.0001 0.5563 2.62 0.0086 
Number of minor commercial driveways per mile 0.1886 7.03 <0.0001 0.2161 2.03 0.0419 
Constant 0.1284 0.84 0.3977 -0.1992 -0.56 0.5785 
Over-dispersion Parameter --- --- --- 0.7475 4.01 0.0001 
Summary Statistics 
Number of Observations 80 80 
Log Likelihood at Null -454.2245 -454.2245 
Log Likelihood at Convergence -335.5677 -205.8952 
Pseudo R-square value 0.2612 0.5467 
AIC 681.1352 423.7904 
BIC 693.0456 438.0824 

Notes: Model 1 and Model 2 refer to the fixed-parameter Poisson and fixed-parameter negative binomial regression, 
respectively.  

4.3.2.3. 4D segments of Urban and Suburban Arterials 
In the case of the 4D segments, Model 2 (i.e., fixed-parameter negative binomial model) showed superior 
performance (based on AIC, BIC, and Pseudo R2 values) compared to the fixed-parameter Poisson model 
(Table 21). The estimation results suggest that there is significant over-dispersion in the data of 4D urban 
and suburban arterials which can be observed from the statistically significant over-dispersion parameter 
in Model 2 (i.e., negative binomial model) (Table 21). Hence, we discuss the results of the best model 
which is Model 2 in this case. According to the results of Model 2, the average five-year crash frequency 
increases with increasing segment length, AADT, and the number of major commercial driveways per mile 
(Table 21). On the other hand, crash frequency on 4D segments of urban and suburban arterials reduces 
with an increase in inner shoulder width and median width, which makes sense as a wider inner shoulder 
provides a margin of safety to the drivers and can be used by drivers to avoid conflict. Similarly, the wider 
separating physical media may help in reducing the gazing problem specifically during nighttime due to 
opposing traffic. 

 
 



 
 

50 
 

Table 21. Modeling Results: TN-Specific SPFs for 4D Urban and Suburban Arterials 
Variable Model 1 (Poisson) Model 2 (Negative Binomial) 

Coef. t-stat p-value Coef. t-stat p-value 
Segment length (miles) 0.9137 15.51 <0.0001 1.1084 4.78 <0.0001 
Number of major commercial driveways per mile 0.1640 8.16 <0.0001 0.1714 1.99 0.0470 
Inner shoulder width (in feet) -0.0725 -5.55 <0.0001 -0.1091 -3.74 0.0002 
Average annual daily traffic (AADT) in 1000s 0.0436 19.83 <0.0001 0.0555 11.27 <0.0001 
Median width (in feet) -0.0151 -7.24 <0.0001 -0.0179 -3.60 0.0003 
Constant 0.8292 9.83 <0.0001 0.6341 3.83 0.0001 
Over-dispersion Parameter --- --- --- 0.8987 8.70 <0.0001 
Summary Statistics 
Number of Observations 278 278 
Log Likelihood at Null -1563.793 -1563.793 
Log Likelihood at Convergence -1225.656 -711.2471 
Pseudo R-square value 0.2162 0.5451 
AIC 2463.3107 1436.4955 
BIC 2485.0781 1461.8880 

Notes: Model 1 and Model 2 refer to the fixed-parameter Poisson and fixed-parameter negative binomial regression, 
respectively.  

4.3.2.4. 4U segments of Urban and Suburban Arterials 
For the 4U segments of urban and suburban arterials, it is found that Model 2 (i.e., fixed-parameter 
negative binomial regression) performs better than Model 1 (i.e., the fixed-parameter Poisson model). 
Note that the negative binomial model was found to have the lowest values of AIC and BIC, and highest 
Pseudo R2 values (Table 22). Hence, we discuss the effects of key correlates of average five-year crash 
frequency on 4U segments of urban and suburban arterials based on the results of the superior model 
(the fixed-parameter negative binomial model in this case). In Model 2, both the AADT and segment length 
are positively correlated with crash frequency (Table 22). For instance, the estimation results of Model 2 
suggest that a unit increase in segment length increases the average five-year crash frequency by 2.3204 
units (Table 22). Other key correlates which increase crash frequency on 4U segments of urban and 
suburban arterials include the number of minor commercial driveways and the number of major 
industrial/institutional driveways per mile (Table 22). 

Table 22. Modeling Results: TN-Specific SPFs for 4U Urban and Suburban Arterials 
Variable Model 1 (Poisson) Model 2 (Negative Binomial) 

Coef. t-stat p-value Coef. t-stat p-value 
Segment length (miles) 1.0143 5.04 <0.0001 2.3204 3.50 0.0005 
Number of minor commercial driveways per mile 0.0803 3.27 0.0011 0.1988 2.16 0.0305 
Number of major industrial/institutional 
driveways per mile 

0.3390 9.86 <0.0001 0.2478 1.75 0.0799 

Average annual daily traffic (AADT) in 1000s 0.0809 18.30 <0.0001 0.0961 5.19 <0.0001 
Speed limit (miles per hour) -0.1286 -16.91 <0.0001 -0.1243 -6.25 <0.0001 
Constant 5.1006 20.54 <0.0001 4.275 6.02 <0.0001 
Over-dispersion Parameter --- --- ---    
Summary Statistics 
Number of Observations 80 80 
Log Likelihood at Null -813.7149 -813.7149 
Log Likelihood at Convergence -416.0295 -226.9615 
Pseudo R-square value 0.4887 0.7210 
AIC 844.0592 467.9232 
BIC 858.3512 484.5976 

Notes: Model 1 and Model 2 refer to the fixed-parameter Poisson and fixed-parameter negative binomial 
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regression. 

4.3.2.5. 5T segments of Urban and Suburban Arterials 
In the case of 5T segments of urban and suburban arterials, we found that the fixed-parameter negative 
binomial regression model (Model 2) has the best performance with the lowest AIC and BIC values and 
highest Pseudo R2 values (Table 23). The results of Model 2 (fixed-parameter negative binomial model) 
indicate that the average five-year crash frequency on 5T segments of urban and suburban arterials 
increases with an increase in the number of minor commercial driveways, the number of major 
industrial/institutional driveways, and the number of minor industrial/institutional driveways per mile 
(Table 23). These findings confirm our expectations as an increase in the number of driveways along these 
segments increases traffic interaction with the through traffic, thus increasing the crash risk. As expected, 
AADT and segment length are found to be positively correlated with crash frequency (Table 23). 
Importantly, we found that as average offset distance to fixed objects increases on 5T segments, the 
average five-year crash frequency reduces (Table 23). It is noteworthy that modeling results provide 
evidence of over-dispersion in the data (Table 23). 

Table 23. Modeling Results: TN-Specific SPFs for 5T Urban and Suburban Arterials 
Variable Model 1 (Poisson) Model 2 (Negative Binomial) 

Coef. t-stat p-value Coef. t-stat p-value 
Average annual daily traffic (AADT) in 1000s 0.0574 32.30 <0.0001 0.0659 11.50 <0.0001 
Number of minor commercial driveways per mile 0.0924 10.24 <0.0001 0.1305 3.06 0.0021 
Number of major industrial/institutional 
driveways per mile 

0.1059 7.57 <0.0001 0.1251 1.96 0.0495 

Offset to roadside fixed objects (in feet) -0.0225 -8.49 <0.0001 -0.0161 -2.33 0.0200 
Segment length (miles) 0.8567 14.84 <0.0001 1.0026 4.02 0.0001 
Number of minor industrial/institutional 
driveways per mile 

0.0379 4.32 <0.0001 0.0643 1.65 0.0992 

Constant 0.8511 12.92 <0.0001 0.4170 2.40 0.0162 
Over-dispersion Parameter --- --- ---    
Summary Statistics 
Number of Observations 304 304 
Log Likelihood (Null) -2564.5570 -2564.5570 
Log Likelihood (Final Model) -1477.1920 -937.2744 
Pseudo R-square value 0.4239 0.6345 
AIC 2968.3836 1890.5486 
BIC 2994.4030 1920.2859 

Notes: Model 1 and Model 2 refer to the fixed-parameter Poisson and fixed-parameter negative binomial regression, 
respectively.  
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5. FINDINGS: APPLICATION OF CALIBRATION FACTORS 
IN SAFETY ANALYST  
This section aims to summarize the AASHTOWare Safety Analyst User’s Manual in order to deliver a brief 
framework and guidance on the software and provide instruction for implementing the estimated 
Calibration Factors (CFs), Crash Modification Factors (CMFs), and Safety Performance Functions (SPFs) in 
the software to be used by TDOT users. An introduction to the software is presented in Appendix D. In the 
next section, a brief explanation of importing the Tennessee-specific SPFs, CFs, and CMFs into the 
software is provided following an example of using and evaluating countermeasures in Safety Analyst. 
 
5.1. SPFs in Safety Analyst: Application to Tennessee 
In this section, a brief explanation of importing the Tennessee-specific SPFs, CFs, and CMFs into the 
software is presented. As mentioned, the Administration Tool is used to edit or modify the SPFs for each 
subtype. As an example, the SPF for the Rural Multilane Highways for total crashes is modified based on 
the estimated CMFs and CFs for Tennessee. To this end, follow the below steps: 

1.      Open the Administration Tool 
2.      In the “Edit Menu” click on “Edit Agency Safety Performance Function” 
3.      Select the “Seg/Rur; Multilane divided” under the Site Subtype menu (Figure 31) 
4.      Click on “Edit SPF” toolbox to edit the selected SPF (Figure 32) 

 
In the “Edit Agency SPF” window, the coefficients (c) and its functional form can be edited. New terms 
can be added in the SPF function, using the “Add Term” toolbox. The new term can be added as a 
constant term (C), an exponential term with a constant exponent (ec), an exponential term with a 
variable exponent (ecV), or variable power term (Vc). 
 

 
Figure 31: Edit Agency Safety Performance Function Window: AASHTOWare Safety Analyst Software 

 
To add the CMFs or CFs, at first it is required to add a CMF or CF as a variable related to each segment in 
the roadway segment attributes dataset (agency dataset as shown in Figure 33). Also, it is required to 
add the new attributes in the roadway segment element in the Administration Tool. To this end, it is 
needed to do the following steps: 

1-      Open Administration Tool 
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2-      Click on the “Edit” tab in the Menu Bar 
3-      Click on “Deployment Attribute” 
4-      Add a new attribute in the “Roadway Segment Element/Table” (see Figure 34) 
5-      Add attribute name, title, and data type (e.g. Numeric) 

 
Note that, it is required to click on “Update Database” in the “System Database” tab to save the 
changes/modifications that have been made. 
 
After adding the attributes, each CMFs or CFs can be added to SPF function as a variable as shown in 
Figure 32. In our example for the rural multilane divided highways, the CMFs and CFs are added in a 
variable power term form with a power of 1.00. The added attributes can be seen in the Analytical Tool 
for each segment as shown in Figure 35. 
 

 
Figure 32. Edit Agency SPF Window: AASHTOWare Safety Analyst Software 
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Figure 33. Roadway Segment Attributes Dataset 

 
 

 
Figure 34. Edit Deployment-Specific Data Attribute: AASHTO’s Safety Analyst Software 
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Figure 35. Agency Defined Data for a Segment in AASHTOWare Safety Analyst Software 

5.1.1. A comparison of TN SPFs using Safety Analyst 

In this report, in order to make a comparison between the total crash predictions using different types 
of SPFs for the rural multilane divided highways, after creating a sample dataset some segments are 
selected. Five types of SPF are defined as follows: 
Eq.16. Highway Safety Manual HSM-Base SPF Model (HSM Base) 
 

𝑁𝑁𝐵𝐵𝑎𝑎𝑟𝑟𝑃𝑃 = 𝑒𝑒−9.025 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1.049 
 

(16) 

Eq.17. Tennessee SPF Estimated model-Poisson (Estimated) 
 

𝑁𝑁𝐴𝐴𝑇𝑇 = 𝑒𝑒−8.133 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴0.990 ∗ 𝐸𝐸𝑒𝑒𝑒𝑒𝛴𝛴𝑑𝑑𝑛𝑛𝑛𝑛𝑒𝑒 
 

(17) 

  Eq.18. HSM SPF-Base with Base Calibration Factor-CFBase (HSM_Base*CF-base) 
 

𝑁𝑁𝐵𝐵𝑎𝑎𝑟𝑟𝑃𝑃 = 𝑒𝑒−9.025 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1.049 ∗ 𝐶𝐶𝑜𝑜𝐵𝐵𝑎𝑎𝑟𝑟𝑃𝑃  
 

(18) 

Eq.19. HSM SPF-Base with HSM Adjusted Crash Modification Factors-CMFAdjusted (HSM_Base*CMFs) 
 

𝑁𝑁𝐵𝐵𝑎𝑎𝑟𝑟𝑃𝑃 = 𝑒𝑒−9.025 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1.049 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿𝑎𝑎𝑙𝑙𝑃𝑃 𝑏𝑏𝑖𝑖𝑃𝑃𝑃𝑃ℎ ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑃𝑃𝑃𝑃𝑖𝑖𝑎𝑎𝑙𝑙 𝑏𝑏𝑖𝑖𝑃𝑃𝑃𝑃ℎ ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏𝑖𝑖𝑃𝑃𝑃𝑃ℎ 
 

(19) 

Eq.20. HSM SPF-Base with HSM Adjusted CMFs and Adjusted CF (HSM_Base*CMFs*CF-adj) 
  

𝑁𝑁𝐵𝐵𝑎𝑎𝑟𝑟𝑃𝑃 = 𝑒𝑒−9.025 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴1.049 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝐿𝐿𝑎𝑎𝑙𝑙𝑃𝑃 𝑏𝑏𝑖𝑖𝑃𝑃𝑃𝑃ℎ ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑃𝑃𝑃𝑃𝑖𝑖𝑎𝑎𝑙𝑙 𝑏𝑏𝑖𝑖𝑃𝑃𝑃𝑃ℎ ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃 𝑏𝑏𝑖𝑖𝑃𝑃𝑃𝑃ℎ
∗ 𝐶𝐶𝑜𝑜𝑎𝑎𝑃𝑃𝑎𝑎𝑜𝑜𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃 

 

(20) 

Using the Analytical Tool, through pursuing the following steps, the observed and predicted crash 
frequencies can be reported for the selected sites/segments. 

1.      Open Safety Analyst Analytical Tool 
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2.      Run the “Getting Started Wizard” 
3.      Create a new workbook and a new site list or work in an existing workbook or site list 
4.      Select Network Screening 
5.      Click on Finish and close the new pop-up window 
6.      Click on the “Site List” tab in the Menu bar (see Figure 36) 
7.      In the pop-up window (Edit Site List) select a site subtype (Rural Multilane Divided Highway) 

and click on “Analyze Crashes” tab and select “Safety Performance Report” (See Figure 37) 
8.   In the new pop-up window crash severity, analysis limits, and analytical period can be 

determined. 
 
The tentative results of analyzing different segments using the five defined SPFs are presented in Table 
24. The result shows that the HSM base SPF with the HSM crash modification factors and the adjusted 
calibration factor mostly brings about the best prediction very close to the observed crash 
frequencies/counts and with the minimum error compared with the other SPF types. 

 
Figure 36. Analytical Tool Menu Bar 
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Figure 37. Analytical Tool Site Selection for SPF Report 

 

Table 24. A Comparison between SPFs in Tennessee Rural Multilane Divided Highways 
Site Subtype/ 
Route 

Analysis Limits Analysis Period Observed Crash  SPF Type Predicted Crash Error % 

Start 
Location 

End 
Location 

Start 
Year 

End 
Year 

Count Freq. Count Freq.  

Rural Multilane 
Divided/  
SR040  
County 139 
TN 

0.000 0.360 2017 2017 5 13.89 Base 
Estimated 

2.44 6.79 
9.33 

51% 
3.36 33% 

Base*CF-base 4.65 12.93 7% 
Base*CMF 2.47 6.86 51% 
Base*CMF*CFadj 4.78 13.29 4% 

Rural Multilane 
Divided/ 
SR018 
County 69 
TN 

26.040 26.230 2017 2017 1 5.26 Base 
Estimated 

0.38 1.99 
2.92 

62% 
0.55 45% 

Base*CF-base 0.71 3.76 29% 
Base*CMF 0.43 2.24 57% 
Base*CMF*CFadj 0.82 4.3 18% 

Rural Multilane 
Divided/ 
SR018 
County 69 
TN 

26.230 26.411 2017 2017 1 5.52 Base 
Estimated 

0.37 2.06 
3.03 

63% 
0.55 45% 

Base*CF-base 0.71 3.91 29% 
Base*CMF 0.42 2.33 58% 
Base*CMF*CFadj 0.81 4.47 19% 

Rural Multilane 
Divided/ 
SR111 
County 153 
TN 

3.490 3.600 2017 2017 1 9.09 Base 
Estimated 

0.44 3.98 
5.64 

56% 
0.62 38% 

Base*CF-base 0.83 7.569 17% 
Base*CMF 0.42 3.83 58% 
Base*CMF*CFadj 0.82 7.41 18% 

Rural Multilane 
Divided/ 
SR009 
County 13 
TN 

1.310 1.748 2017 2017 3 6.85 Base 
Estimated 

0.57 1.29 
1.94 

81% 
0.85 72% 

Base*CF-base 0.86 4.97 71% 
Base*CMF 0.57 1.29 81% 
Base*CMF*CFadj 2.26 5.16 25% 

Rural Multilane 
Divided/ 
SR065 
County 37 
TN 

10.930 10.970 2017 2017 1 25.00 Base 
Estimated 

0.11 2.71 
3.92 

89% 
0.16 84% 

Base*CF-base 0.41 10.21 59% 
Base*CMF 0.13 3.15 87% 
Base*CMF*CFadj 0.5 12.36 50% 

Rural Multilane 
Divided/ 
SR025 
County 159 
TN 

13.200 13.270 2017 2017 1 14.29 Base 
Estimated 

0.36 5.14 
7.18 

64% 
0.5 50% 

Base*CF-base 1.36 19.40 36% 
Base*CMF 0.38 5.46 62% 
Base*CMF*CFadj 1.5 21.38 50% 
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5.1.2. Example of How to Use Countermeasures in Safety Analyst 

As mentioned before, using the Administration Tool, countermeasures can be edited, defined, and added 
as the Agency Countermeasures. Accordingly, the below steps should be followed. 

1-     Open Administration Tool 
2-      Click on the “Countermeasures” in the “Edit” tab to edit the agency-specified countermeasure 

data (see Figure 38). 
3-      In the pop-up window, as shown in Figure 39, countermeasures can be added and modified. 

 
  

 
Figure 38. Edit Agency Countermeasure in AASHTOWare Safety Analyst Software 

 
An example is provided to show how to make a countermeasure diagnosis, select countermeasures, and 
evaluate the economic and safety benefits of the implementation of the selected countermeasures. In 
Analytical Tool, using the “Diagnosis and Countermeasure Selection” module, considering the collision 
types and observed crash counts, different countermeasures are diagnosed and suggested by the 
software. Moreover, users can manually select and add countermeasures for the selected segment. The 
selected countermeasures can be evaluated and ranked based on their priority by using the “Economic 
Appraisal and Priority Ranking” module. For example, a rural multilane divided highway segment is 
selected, and the installation of continuous milled-in shoulder rumble strip was diagnosed for it. After 
evaluating the selected countermeasure, the result of the safety benefit evaluation shows that after 20 
years, total crashes will be reduced by 13.76 crashes as shown in Figure 39. 
 

 
Figure 39. Example of the Safety Benefit evaluation of a Countermeasure 

 
Please note that the results presented in this chapter are tentative and only provided for demonstration. 
For more information about AASHTOWare Safety Analyst, please refer to the AASHTOWare Safety 
Analyst User’s Manual.
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6. CONCLUSIONS AND RECOMMENDATIONS 
6.1. Achieved outcomes and benefits of the project 
Safety is a critical concern on Tennessee roadways. To improve safety, it is important to understand and 
predict where safety problems are and how to mitigate them using a data-analytic approach. The adoption 
of procedures in the Highway Safety Manual facilitates the identification of appropriate sites for 
treatment and making informed investments in appropriate countermeasures. In this context, the study 
provides the following benefits:  

1. The overall project outcome is an improvement in the current methodology of safety analysis and 
the ability to make more informed decisions about appropriate countermeasures. 

2. The project aids in the operation and management of Tennessee's transportation system to 
provide a high level of safety and service to the public.  

3. The project improves the safety analysis process by using data to make informed decisions about 
countermeasures. Specifically, the calibrated models, as well as newly developed TN-specific SPFs, 
predict the expected number and severity of crashes as it relates to a road type, road class and 
quantifies the impacts of proposed safety countermeasures for alternatives analysis. 

4. The calibrated predictive models and newly developed SPFs can assist TDOT in improving the 
reliability of common activities such as screening a network for sites to reduce crashes or 
assessment of new or alternative geometric characteristics of various types of rural highways and 
urban and suburban arterials. 

 
6.2. Summary  
This report provides analyses of calibration factors and SPF development for rural multilane highways and 
urban and suburban arterials. Referring to rural multilane highways, this report summarizes the separate 
analysis conducted for four-lane divided (4D) and four-lane undivided (4U) segments of rural multilane 
highways. Similarly, separate analyses are conducted for each of the five different types of urban and 
suburban arterials including two-lane undivided (2U), three-lane undivided including 2WLTL (3T), four-
lane divided (4D), four-lane undivided (4U), and five-lane (5T) with 2WLTL roadway segments. Random 
samples for each of the seven roadway types (two different types of rural multilane and five different 
types of urban and suburban arterials) were selected from the clean data of each roadway type (segments 
which were longer than 0.1 mile and were extractable in the TDOT Image Viewer Application). Data for 
each of the roadway types including crash data (for each of the five years) and roadway geometric data 
were manually extracted from various sources of TDOT requiring extensive efforts. The traffic data for 
each road segment for each of the five years (2013-2017) were obtained from TDOT’s Traffic History 
Application. Once all the data collection was completed, all the data elements were merged to create a 
database for each of the seven types (i.e., rural multilane and urban and suburban arterials) of roadways. 
All the roadway segments belonging to each of the seven roadway types were identified and extracted 
from TDOT’s E-TRIMS software by running the query suggested by TDOT. As a next step, roadway 
segments shorter than 0.1 miles and those which were not extractable in TDOT’s Image Viewer Software 
were removed from the datasets of each of the roadway types. The number of clean segments for each 
roadway types were obtained which include: 1132 4D rural multilane segments (767.11 miles), 81 4U rural 
multilane segments (34.02 miles), 2,472 2U urban and suburban arterial segments (1124.76 miles), 414 
3T urban and suburban arterial segments (117.73 miles), 1,735 4D urban and suburban arterial segments 
(585.47 miles), 430 4U urban and suburban arterial segments (120.35 miles), and 1,519 5T urban and 
suburban arterial segments (523.934 miles). Random samples were selected for each roadway type, 
except 4U rural multilane as all 81 segments were considered for analysis while keeping in view the 
appropriate and the minimum data requirement for the development of SPFs and the HSM calibration 
respectively. As a next step, crash and roadway geometry data were extracted using crash report form 
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and TDOT’s Image Viewer in the E-TRIMS software. Finally, clean datasets (after excluding outliers) for 
analyses include 271 4D rural multilane segments, 81 4U rural multilane segments, 234 2U urban and 
suburban arterial segments, 80 3T urban and suburban arterial segments, 278 4D urban and suburban 
arterial segments, 80 4U urban and suburban arterial segments, and 304 5T urban and suburban arterial 
segments.  
 
As a first step, the crash rates for the entire state of Tennessee and all four regions were computed for all 
the roadway facilities to understand the existing safety situation on these facilities. The average crash rate 
per 100 million VMT for all regions on 4D and 4U segments of rural multilane highways are found to be 
130.02 and 260.46, respectively. This indicates that in Tennessee, 4U segments of rural multilane 
highways are risky compared to 4D segments of the rural multilane highways, which could be due to the 
presence of physical medians separating the opposing traffic flow. Based on the crash rate per 100 million 
VMT for 4D segments of rural multilane highways, Region 3 is the riskiest while Region 2 has the least risk 
in Tennessee. For 4U segments of rural multilane highways, the computed crash rate suggests that Region 
2 is the riskiest while Region 3 is the least risky region in Tennessee.  
 
The calibration of the HSM SPFs for all types of rural multilane highways and urban and suburban arterials 
revealed that the number of actual crashes is significantly higher than those predicted by the HSM SPFs 
(even after accounting for local adjustments). In summary, the average five-year calibration factor 
(computed after accounting for TN-specific conditions) for different types of rural multilane highways and 
urban and suburban arterials are given below: 

● State-wide Adjusted Calibration Factor (Cfadj): 
○ 4D Segments of Rural Multilane Highways:  1.47 
○ 4U Segments of Rural Multilane Highways: 2.25 
○ 2U Segments of Urban and Suburban Arterials: 4.71 
○ 3T Segments of Urban and Suburban Arterials: 5.82 
○ 4D Segments of Urban and Suburban Arterials: 4.46 
○ 4U Segments of Urban and Suburban Arterials: 7.63 
○ 5T Segments of Urban and Suburban Arterials:   3.57 

 
The calibration of the HSM SPFs for 4D segments of rural multilane highways reveals that the average five-
year calibration factor for all regions is 1.47 with year-wise calibration factors ranging between 1.43 and 
1.52. This indicates that the actual number of crashes on 4D segments of rural multilane highways are at 
least 0.47 times greater than those predicted by the HSM SPF after applying the calibration factors. 
Referring to the region-wise average five-year calibration factors for 4D segments of rural multilane 
highways, some differences are observed as opposed to the collective calibration factors for all regions in 
Tennessee. These findings agree with crash rate analyses. A similar interpretation applies to the 
calibration factors for the remaining four different roadway classes. 
 
As a next step, we developed TN-specific SPFs, considering the Poisson and Negative binomial distribution, 
for all types of rural multilane (4D and 4U segments) and urban and suburban arterials (2U, 3T, 4D, 4U, 
and 5T segments). In this regard, two models (including all key covariates of average five-year crash 
frequency) were developed including the fixed-parameter Poisson and fixed-parameter negative binomial 
models for each of the same roadway types. The modeling results for each of the seven roadway types 
suggest significant evidence of over-dispersion in the data which is confirmed by the significant over-
dispersion parameter in the negative binomial model in case of each roadway type. Based on the in-
sample fit statistics (AIC and BIC values), we found that Model 2 (fixed-parameter negative binomial 
model) out-performed all roadway types. This confirms the significance of accounting for over-dispersion 
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in the crash data in the development of SPFs, as not accounting for over-dispersion could compromise the 
results. The modeling results provide insights regarding the association of key factors with average five-
year crash frequency on each roadway type. For instance, the TN-specific SPFs for each of the seven 
roadway types suggest that the average five-year crash frequency increases with an increase in AADT and 
segment length. The modeling results for 4D segments of rural multilane highways suggest that crash 
frequency reduces with an increase in speed limit and inner shoulder width. Additionally, the presence of 
rumble strips along the outer shoulder reduces the average five-year crash frequency on the 4U segments 
of rural multilane highways.  
 
Model 2 (fixed-parameter negative binomial model) showed better performance (with lowest AIC and BIC 
values) in the case of each of the five types of urban and suburban arterials. The modeling results for 2U 
segments of urban and suburban arterials suggest that the average five-year crash frequency on these 
segments increases with an increase in the number of minor commercial driveways and the number of 
major industrial/institutional driveways per mile. The TN-specific SPFs for 3T segments of urban and 
suburban arterials suggest that the average five-year crash frequency on these segments increases with 
an increase in the number of major commercial driveways and the number of minor commercial 
driveways per mile. This was expected, as these driveways increase traffic interaction with the through 
traffic which consequently increases the chances of a crash. The estimation results of 4D segments of 
urban and suburban arterials indicate that crash frequency on these segments increases with an increase 
in the number of major commercial driveways per mile. Note that the modeling results of 4D segments of 
urban and suburban arterials suggest that the average five-year crash frequency decreases with an 
increase in median width and inner shoulder width on these roadway segments. The TN-specific SPFs for 
4U segments of urban and suburban arterials (Model 2) suggest that the density of minor commercial and 
major industrial/institutional driveways increases the average five-year crash frequency on these road 
segments. Finally, the TN-specific SPFs for 5T segments of urban and suburban arterials suggest that crash 
frequency increases with an increase in the number of various types of driveways (i.e., minor commercial, 
minor industrial/institutional, and major industrial/institutional) per mile. Importantly, TN-specific SPFs 
suggest that an increase in average offset distance to fixed objects reduces crash frequency on the 5T 
segments of urban and suburban arterials.  The TN-specific SPFs for all seven roadway types show 
significant evidence of over-dispersion in the data. Compared to the fixed-parameter Poisson, fixed-
parameter negative binomial improved the estimation and in-simple fit in case of all roadway types. This 
provides compelling empirical evidence that over-dispersion should be accounted for in estimating TN-
specific SPFs, ignoring which can result in inappropriate estimation inferences. Based on TN-specific SPFs, 
several countermeasures can be developed for each roadway type to enhance road safety across the 
state. 
 
 
6.3. Recommendations 
The recommendations relate to improvements in safety analysis procedures in Tennessee: 

● TDOT should adopt the Highway Safety Manual procedures and calibration factors developed in 
this study for highway safety improvements. This study has developed Tennessee-specific 
calibration factors as well as estimated Tennessee-specific fixed parameter models. These 
calibration factors and models should be considered in applying the HSM procedures, e.g., in the 
network screening and safety assessment process, performed by TDOT staff for the highway 
safety improvement program.   

● After adopting the Highway Safety Manual procedures, TDOT Strategic Transportation 
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Investments Division should apply the HSM procedures to the roadways covered in the project 
reports. The HSM procedures can be applied using the Safety Analyst tool. It will be important to 
identify sites that can be improved with countermeasures and do evaluations of alternatives to 
demonstrate the value of the tool. This will require linking of TDOT crash and roadway inventory 
databases and using them for analysis in the Safety Analyst tool.  

● TDOT should continue to update calibration factors and apply them using Highway Safety Manual 
procedures. This study used 5-year Tennessee crash data to calibrate SPF models suggested by 
the HSM and adjust it using CMFs. Results have shown that the CF values are substantially greater 
than 1, and also significantly vary across time and regions. This means that there is potential for 
safety improvement through interventions in the future. TDOT should consider updating CFs 
regularly, and incorporate spatiotemporal variations into the analysis.  

● TDOT can use the Safety Analyst tool to systematically select countermeasures to improve safety. 
Safety Analyst was developed by AASHTO to screen network safety performance, diagnose safety 
issues, select appropriate countermeasures, perform an economic appraisal of alternative 
countermeasures, prioritize safety projects, and evaluate the effectiveness of countermeasures. 
For instance, the tool can be used effectively to identify hotspot locations where observed crashes 
and predicted crashes can be weighted to obtain more accurate estimates of future crashes. Such 
procedures can help TDOT improve safety by allocating their resources in safety-critical locations 
and select the highest-impact countermeasures.  

● For future research, TDOT should consider Artificial Intelligence (AI) methods to improve the safety 
outcome predictions made by traditional HSM methods. The emergence of new methods, 
especially Machine Learning and Deep Learning is promising. More research is needed to 
understand the capabilities of these new methods and how to apply them. Adoption of these 
methods can help TDOT improve the prediction performance by capturing linear and nonlinear 
relationships between explanatory variables and crash frequency.  

 
A request was received from TDOT staff for recommendations on how to handle the HSM analysis 
when considering road widening scenarios, e.g., widening from 2U to 3T, 3T to 4U, 3T to 5T, or from 
4U to 5T. For such projects, the following steps for benefit-cost analysis are recommended: 
● Step 1) Identify facility type (e.g., 2U, 3T, and 4U) for analysis and data collection. 
● Step 2) Having identified the segments needing improvements, evaluate the expected crash 

frequency (PDO and injury crashes) over a time horizon (say 15 years) using calibrated SPFs for 
Tennessee. Say the expected number of crashes over the time horizon for the selected segment 
is X. 

● Step 3) Select the alternative to improve the segments, e.g., widen from 2U to 3T. When 
changing the configuration (i.e., widening from 2U to 3T), ensure that the AADT 
assumptions/trends for future traffic are realistic and will hold. Using the HSM procedures, 
predict the crash frequencies with improvements, i.e., for the 3T configuration apply the TN 
calibrated SPFs for such roads; as a result, say this number of crashes is Y. 

● Step 4) Assuming that X-Y > 0, calculate the benefits of reduced crashes, i.e., $/crash multiplied 
by (X-Y). 

● Step 5) Calculate the cost of road widening-going from 2U to 3T. Then calculate the benefit-cost 
ratio B/C and the Net Present Value (NPV). Review if B/C > 1 and NPV is positive. If so, this 
justifies proceeding with the widening.  
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APPENDIX A: Statistical Modeling  
A.1. Modeling of crash data 
Given the discrete non-negative data nature of crashes, count-data modeling techniques are typically used 
to model crash frequencies as a function of explanatory variables (5). Common techniques include the 
Poisson Generalized Linear Models (GLMs) and/or Negative Binomial GLMs, and these methods appear 
to be the two main methodological alternatives (1; 2; 7; 9; 26-29). The Poisson regression is reported to 
be the most popular of the two (13), where the Poisson distribution is used to approximate rare-event 
count data, such as crash frequency in this case. However, a restrictive assumption of the Poisson 
regression is the requirement of the mean of the count process be equal to its variance (8). When the 
variance of the crash counts is greater than its mean, the data are said to be over-dispersed, and in such 
a case, the negative binomial distribution is preferred4 (8).  
 

A.1.1. Poisson and Negative Binomial Regressions: 

Next, we present a short discussion on the mathematical formulations of the Poisson and negative 
binomial regression. For a detailed discussion on these estimators, readers are referred to (5; 10; 30). 
 
For a Poisson model, the probability of having a specific number of crashes “n” at road segment “i” can 
be written as (13): 

𝑃𝑃(𝑛𝑛𝑖𝑖) =
𝑒𝑒𝑒𝑒𝑒𝑒 (−𝜆𝜆𝑖𝑖)𝜆𝜆𝑖𝑖𝑙𝑙

𝑛𝑛𝑖𝑖!
 

(1) 

where: 𝑃𝑃(𝑛𝑛𝑖𝑖) is the probability of a crash occurring at segment “i”, “n” times per specific time-period on 
segment i; and 𝜆𝜆𝑖𝑖 is the Poisson parameter for segment “i” which is numerically equivalent to segment “i” 
expected crash frequency per year 𝐸𝐸(𝑛𝑛𝑖𝑖). The regression can be fitted to crash data by specifying 𝜆𝜆𝑖𝑖 as a 
function of explanatory variables such as Annual Average Daily Traffic, and segment length. Formally, 𝜆𝜆𝑖𝑖 
can be viewed as a log link function of a set of independent variables (13): 

𝛴𝛴𝑛𝑛(𝜆𝜆𝑖𝑖) = 𝛽𝛽(𝑋𝑋𝑖𝑖) (2) 
where 𝑋𝑋𝑖𝑖 is a vector of explanatory variables, and 𝛽𝛽 is a vector of parameter estimates. 
The Poisson function defined in Equation 1 and 2 can be maximized by the standard maximum likelihood 
procedure with the following likelihood function (13): 

𝐿𝐿(𝛽𝛽) = �
𝑒𝑒𝑒𝑒𝑒𝑒 [−𝑒𝑒𝑒𝑒𝑒𝑒 (𝛽𝛽𝑋𝑋𝑖𝑖) ] [𝑒𝑒𝑒𝑒𝑒𝑒 (𝛽𝛽𝑋𝑋𝑖𝑖) ]𝑙𝑙𝑖𝑖

𝑛𝑛𝑖𝑖!

𝑙𝑙

𝑖𝑖

 
 (3) 

Application of the Poisson regression to over-dispersed crash data can result in inappropriate results. If 
mean and variance of crash data are not equal, corrective measures are applied to Equation 2 by adding 
an independently distributed error term ∈, as follow: 

𝛴𝛴𝑛𝑛(𝜆𝜆𝑖𝑖) = 𝛽𝛽(𝑋𝑋𝑖𝑖) +∈𝑖𝑖 (4) 
where 𝑒𝑒𝑒𝑒𝑒𝑒 (∈𝑖𝑖) in Equation 4 is a gamma-distributed error term with mean one and variance α (13). The 
conditional probability of crashes then becomes (31): 

𝑃𝑃(∈) =
𝑒𝑒𝑒𝑒𝑒𝑒 [−𝜆𝜆𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 (∈𝑖𝑖) ] [𝜆𝜆𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 (∈𝑖𝑖) ]𝑙𝑙𝑖𝑖

𝑛𝑛𝑖𝑖!
 

(5) 

                                                            
4 Due to the naturally high variability of crash frequencies, it is recommended that SPFs be developed using negative 
binomial regression techniques (1; 13). Such models are also referred to the mixed Poisson-gamma models because 
crashes within rural two-lane two-way road segments follow a Poisson distribution, whereas the variation across 
multiple sites follow a gamma distribution. In this analysis, both the Poisson and negative binomial regression 
techniques are considered.  
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Following (31), to obtain an unconditional distribution of 𝑛𝑛𝑖𝑖, ∈𝑖𝑖 can be integrated out of Equation 5, which 
results in the following maximum likelihood estimation problem: 

𝑃𝑃(𝑛𝑛𝑖𝑖) =
𝛤𝛤(𝜃𝜃 + 𝑛𝑛𝑖𝑖)
[𝛤𝛤(𝜃𝜃).𝑛𝑛𝑖𝑖!]

.𝑛𝑛𝑖𝑖𝜃𝜃(1 − 𝑛𝑛𝑖𝑖)𝑙𝑙𝑖𝑖  
(6) 

where: 𝑛𝑛𝑖𝑖 is 𝜃𝜃(𝜃𝜃 + 𝜆𝜆𝑖𝑖) and 𝜃𝜃 = 1
𝛼𝛼

, 𝛤𝛤 is the gamma function. It can be seen in Equation 6 that the Poisson 
is a limiting function of the Poisson-Gamma model as variance α approaches to zero. Following (13), if α 
is significantly different from zero, negative binomial regression should be favored and if not, the Poisson 
model can be more appropriate (5). 
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APPENDIX B: Crash Rate Over Space across Tennessee 
TABLE B.1: Region Wise Crash Rate for 4D and 4U Rural Multilane Highways 

Area Four Lane Divided (4D) Rural Highways Four Lane Undivided (4U) Rural Highways 
N Mean Std. Dev. Min Max N Mean Std. Dev. Min Max 

 Crash Rate per 100 Million VMT Crash Rate per 100 Million VMT 
Region 1 44 130.07 184.78 0 870.79 20 279.31 244.85 0 866.47 
Region 2 78 118.87 210.62 0 1471.25 14 341.02 651.98 0 2557.84 
Region 3 41 157.64 322.14 0 1700.21 19 109.79 117.76 0 444.47 
Region 4 108 127.58 198.20 0 1206.94 28 308.96 493.62 0 2591.16 

 Crash per Mile of Roadway per Year Crash per Mile of Roadway per Year 
Region 1 44 4.02 4.13 0 18.66 20 10.54 13.73 0 57.56 
Region 2 78 2.63 3.40 0 24.21 14 5.61 9.68 0 36.66 
Region 3 41 2.96 6.62 0 41.81 19 3.12 3.80 0 15.00 
Region 4 108 2.54 2.94 0 14.28 28 5.02 5.52 0 21.49 

 
TABLE B.2: Region Wise Crash Rate for 2U, 4D, and 5T Urban and Suburban Arterials 

Area Crash rate per 100 million VMT Crash per mile of roadway per year 
N Mean Std. Dev. Min Max N Mean Std. 

Dev. 
Min Max 

Two Lanes Undivided (2U) Urban and Suburban Arterials (N = 234) 
Region 1 67 378.76 333.70 0 1349.76 67 9.60 12.22 0 74.40 
Region 2 38 295.07 382.43 0 2349.42 38 8.10 16.85 0 105.71 
Region 3 88 363.38 389.39 0 2597.76 88 11.86 15.30 0 89.00 
Region 4 41 268.04 297.72 0 1489.36 41 4.77 5.22 0 22.43 

Three Lanes (3T) Urban and Suburban Arterials including 2WLTL (N = 80) 
Region 1 22 321.12 391.90 0.00 1484.68 22 9.29 10.14 0.00 30.84 
Region 2 16 709.74 704.20 0.00 2370.60 16 28.36 30.80 0.00 106.67 
Region 3 34 558.82 767.36 0.00 3884.28 34 29.96 42.02 0.00 221.11 
Region 4 8 601.45 344.44 148.02 1206.93 8 17.78 24.34 1.52 76.47 

Four Lanes Divided (4D) Urban and Suburban Arterials (N = 278) 
Region 1 114 300.90 478.04 0 3800.08 114 24.18 43.04 0 332 
Region 2 41 309.64 548.33 0 2645.21 41 23.29 52.06 0 309.09 
Region 3 59 385.59 558.46 0 3197.77 59 33.66 49.17 0 203.12 
Region 4 64 269.74 710.86 0 4949.82 64 20.93 56.60 0 370 

Four Lanes Undivided (4U) Urban and Suburban Arterials (N = 80) 
Region 1 14 498.59 572.96 35.85 1974.51 14 29.07 29.24 2 86.90 
Region 2 16 1006.35 846.81 228.63 3457.75 16 53.32 57.33 4.84 221.81 
Region 3 20 1049.45 2153.88 19.35 7528.29 20 59.80 134.23 0.384 515.78 
Region 4 30 583.69 627.06 0 2734.08 30 34.06 39.93 0 160.93 

Five Lanes (5T) Urban and Suburban Arterials including 2WLTL (N = 304) 
Region 1 87 434.27 571.55 0 4119.67 87 31.32 38.09 0 185.21 
Region 2 46 583.06 498.47 54.58 2568.56 46 46.50 67.65 1.90 445.61 
Region 3 119 511.84 483.43 0 2324.28 119 45.26 55.57 0 280.31 
Region 4 52 469.07 457.29 0 1847.73 52 29.70 33.90 0 106.31 
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APPENDIX C: Calibration Factors Over Space and Time 
Four-Lane Divided (4D) Segments - Rural Multilane Highways 

 
TABLE C.1: Calibration Factors All Regions (Base Case HSM) - 4D Highways 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 271 1.378 1.952 0.000 17.80 373.400 1.445 
Predicted 5 Years Crashes 271 0.953 1.329 0.038 9.82 258.349   
Observed 2017 Crashes 271 1.494 2.765 0.000 26.00 405.000 1.484 
Predicted 2017 Crashes 271 1.007 1.415 0.037 10.58 272.840   
Observed 2016 Crashes 271 1.373 2.369 0.000 20.00 372.000 1.432 
Predicted 2016 Crashes 271 0.959 1.291 0.039 9.16 259.854   
Observed 2015 Crashes 271 1.339 2.260 0.000 19.00 363.000 1.404 
Predicted 2015 Crashes 271 0.954 1.353 0.039 10.82 258.525   
Observed 2014 Crashes 271 1.384 2.216 0.000 17.00 375.000 1.488 
Predicted 2014 Crashes 271 0.930 1.326 0.037 9.78 251.938   
Observed 2013 Crashes 271 1.299 1.921 0.000 10.00 352.000 1.415 
Predicted 2013 Crashes 271 0.918 1.283 0.036 9.38 248.766   

 
TABLE C.2: Calibration Factors All Regions (Base + CMF Adj) - 4D Highways 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 271 1.378 1.952 0.000 17.80 373.400 1.475 
Predicted 5 Years Crashes 271 0.934 1.300 0.038 9.53 253.131   
Observed 2017 Crashes 271 1.494 2.765 0.000 26.00 405.000 1.515 
Predicted 2017 Crashes 271 0.987 1.384 0.037 10.26 267.361   
Observed 2016 Crashes 271 1.373 2.369 0.000 20.00 372.000 1.461 
Predicted 2016 Crashes 271 0.939 1.262 0.039 8.89 254.545   
Observed 2015 Crashes 271 1.339 2.260 0.000 19.00 363.000 1.433 
Predicted 2015 Crashes 271 0.935 1.323 0.039 10.50 253.317   
Observed 2014 Crashes 271 1.384 2.216 0.000 17.00 375.000 1.519 
Predicted 2014 Crashes 271 0.911 1.297 0.037 9.49 246.872   
Observed 2013 Crashes 271 1.299 1.921 0.000 10.00 352.000 1.444 
Predicted 2013 Crashes 271 0.899 1.255 0.036 9.10 243.738   

 
TABLE C.3: Calibration Factors Region 1 (Base Case HSM) - 4D Highways 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 44 1.327 1.383 0.000 5.80 58.400 1.571 
Predicted 5 Years Crashes 44 0.845 0.870 0.068 3.59 37.166   
Observed 2017 Crashes 44 1.205 1.692 0.000 7.00 53.000 1.338 
Predicted 2017 Crashes 44 0.900 0.919 0.073 3.69 39.612   
Observed 2016 Crashes 44 1.273 1.561 0.000 6.00 56.000 1.493 
Predicted 2016 Crashes 44 0.852 0.861 0.070 3.61 37.509   
Observed 2015 Crashes 44 1.477 2.107 0.000 10.00 65.000 1.766 
Predicted 2015 Crashes 44 0.837 0.864 0.066 3.80 36.807   
Observed 2014 Crashes 44 1.273 1.590 0.000 7.00 56.000 1.573 
Predicted 2014 Crashes 44 0.809 0.843 0.067 3.77 35.604   
Observed 2013 Crashes 44 1.409 1.575 0.000 7.00 62.000 1.707 
Predicted 2013 Crashes 44 0.826 0.890 0.066 4.19 36.324   
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TABLE C.4: Calibration Factors Region 1 (Base + CMF Adj) - 4D Highways 
Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 44 1.327 1.383 0.000 5.80 58.400 1.601 
Predicted 5 Years Crashes 44 0.829 0.846 0.071 3.48 36.467   
Observed 2017 Crashes 44 1.205 1.692 0.000 7.00 53.000 1.363 
Predicted 2017 Crashes 44 0.884 0.895 0.076 3.58 38.876   
Observed 2016 Crashes 44 1.273 1.561 0.000 6.00 56.000 1.521 
Predicted 2016 Crashes 44 0.837 0.838 0.073 3.50 36.813   
Observed 2015 Crashes 44 1.477 2.107 0.000 10.00 65.000 1.800 
Predicted 2015 Crashes 44 0.821 0.840 0.069 3.69 36.120   
Observed 2014 Crashes 44 1.273 1.590 0.000 7.00 56.000 1.603 
Predicted 2014 Crashes 44 0.794 0.820 0.070 3.65 34.932   
Observed 2013 Crashes 44 1.409 1.575 0.000 7.00 62.000 1.740 
Predicted 2013 Crashes 44 0.810 0.865 0.068 4.07 35.622   

 
 

TABLE C.5: Calibration Factors Region 2 (Base Case HSM) - 4D Highways 
Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 78 1.418 1.745 0.000 8.200 110.600 1.388 
Predicted 5 Years Crashes 78 1.021 1.298 0.038 6.630 79.657   
Observed 2017 Crashes 78 1.833 3.332 0.000 26.000 143.000 1.721 
Predicted 2017 Crashes 78 1.065 1.379 0.037 7.073 83.094   
Observed 2016 Crashes 78 1.551 2.526 0.000 14.000 121.000 1.503 
Predicted 2016 Crashes 78 1.032 1.281 0.039 6.500 80.514   
Observed 2015 Crashes 78 1.321 2.054 0.000 10.000 103.000 1.294 
Predicted 2015 Crashes 78 1.021 1.302 0.039 7.205 79.624   
Observed 2014 Crashes 78 1.167 1.615 0.000 9.000 91.000 1.165 
Predicted 2014 Crashes 78 1.002 1.326 0.037 6.864 78.134   
Observed 2013 Crashes 78 1.218 1.884 0.000 9.000 95.000 1.234 
Predicted 2013 Crashes 78 0.987 1.234 0.036 6.058 76.983   

 
TABLE C.6: Calibration Factors Region 2 (Base + CMF Adj) - 4D Highways 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 78 1.418 1.745 0.000 8.200 110.600 1.421 
Predicted 5 Years Crashes 78 0.998 1.269 0.038 6.564 77.832   
Observed 2017 Crashes 78 1.833 3.332 0.000 26.000 143.000 1.761 
Predicted 2017 Crashes 78 1.041 1.347 0.037 7.003 81.189   
Observed 2016 Crashes 78 1.551 2.526 0.000 14.000 121.000 1.538 
Predicted 2016 Crashes 78 1.009 1.253 0.039 6.435 78.684   
Observed 2015 Crashes 78 1.321 2.054 0.000 10.000 103.000 1.324 
Predicted 2015 Crashes 78 0.998 1.274 0.039 7.133 77.811   
Observed 2014 Crashes 78 1.167 1.615 0.000 9.000 91.000 1.192 
Predicted 2014 Crashes 78 0.979 1.296 0.037 6.658 76.344   
Observed 2013 Crashes 78 1.218 1.884 0.000 9.000 95.000 1.263 
Predicted 2013 Crashes 78 0.964 1.206 0.036 5.998 75.195   
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TABLE C.7: Calibration Factors Region 3 (Base Case HSM) - 4D Segments 
Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 41 1.361 2.106 0.000 11.80 55.80 1.338 
Predicted 5 Years Crashes 41 1.017 1.728 0.051 9.06 41.72   
Observed 2017 Crashes 41 1.268 1.950 0.000 10.00 52.00 1.165 
Predicted 2017 Crashes 41 1.089 1.824 0.056 9.16 44.65   
Observed 2016 Crashes 41 1.488 2.570 0.000 12.00 61.00 1.398 
Predicted 2016 Crashes 41 1.065 1.757 0.048 9.16 43.65   
Observed 2015 Crashes 41 1.317 2.263 0.000 12.00 54.00 1.320 
Predicted 2015 Crashes 41 0.998 1.694 0.048 8.72 40.90   
Observed 2014 Crashes 41 1.537 2.776 0.000 17.00 63.00 1.578 
Predicted 2014 Crashes 41 0.974 1.699 0.050 9.22 39.91   
Observed 2013 Crashes 41 1.195 2.076 0.000 8.00 49.00 1.240 
Predicted 2013 Crashes 41 0.963 1.679 0.053 9.03 39.50   

 
TABLE C.8: Calibration Factors Region 3 (Base + CMF Adj) - 4D segments 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 41 1.361 2.106 0.000 11.80 55.80 1.369 
Predicted 5 Years Crashes 41 0.994 1.681 0.045 8.79 40.77   
Observed 2017 Crashes 41 1.268 1.950 0.000 10.00 52.00 1.192 
Predicted 2017 Crashes 41 1.064 1.774 0.050 8.88 43.62   
Observed 2016 Crashes 41 1.488 2.570 0.000 12.00 61.00 1.430 
Predicted 2016 Crashes 41 1.040 1.710 0.043 8.89 42.65   
Observed 2015 Crashes 41 1.317 2.263 0.000 12.00 54.00 1.351 
Predicted 2015 Crashes 41 0.975 1.647 0.042 8.46 39.96   
Observed 2014 Crashes 41 1.537 2.776 0.000 17.00 63.00 1.615 
Predicted 2014 Crashes 41 0.951 1.652 0.044 8.95 39.01   
Observed 2013 Crashes 41 1.195 2.076 0.000 8.00 49.00 1.268 
Predicted 2013 Crashes 41 0.942 1.634 0.047 8.76 38.63   

 
TABLE C.9: Calibration Factors Region 4 (Base Case HSM) - 4D Segments 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 108 1.376 2.236 0 17.800 148.600 1.489 
Predicted 5 Years Crashes 108 0.924 1.347 0.051 9.821 99.810   
Observed 2017 Crashes 108 1.454 2.930 0 25.000 157.000 1.488 
Predicted 2017 Crashes 108 0.977 1.445 0.056 10.579 105.484   
Observed 2016 Crashes 108 1.241 2.464 0 20.000 134.000 1.365 
Predicted 2016 Crashes 108 0.909 1.247 0.051 8.550 98.184   
Observed 2015 Crashes 108 1.306 2.478 0 19.000 141.000 1.393 
Predicted 2015 Crashes 108 0.937 1.420 0.05 10.820 101.192   
Observed 2014 Crashes 108 1.528 2.559 0 15.000 165.000 1.679 
Predicted 2014 Crashes 108 0.910 1.340 0.052 9.782 98.287   
Observed 2013 Crashes 108 1.352 2.034 0 10.000 146.000 1.521 
Predicted 2013 Crashes 108 0.889 1.295 0.047 9.380 95.959   
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TABLE C.10: Calibration Factors Region 4 (Base + CMF Adj) - 4D segments 
Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 108 1.376 2.236 0.000 17.800 148.600 1.515 
Predicted 5 Years Crashes 108 0.908 1.323 0.050 9.526 98.063   
Observed 2017 Crashes 108 1.454 2.930 0.000 25.000 157.000 1.514 
Predicted 2017 Crashes 108 0.960 1.420 0.054 10.262 103.677   
Observed 2016 Crashes 108 1.241 2.464 0.000 20.000 134.000 1.390 
Predicted 2016 Crashes 108 0.893 1.224 0.049 8.294 96.394   
Observed 2015 Crashes 108 1.306 2.478 0.000 19.000 141.000 1.418 
Predicted 2015 Crashes 108 0.921 1.395 0.049 10.496 99.423   
Observed 2014 Crashes 108 1.528 2.559 0.000 15.000 165.000 1.708 
Predicted 2014 Crashes 108 0.894 1.317 0.050 9.489 96.588   
Observed 2013 Crashes 108 1.352 2.034 0.000 10.000 146.000 1.548 
Predicted 2013 Crashes 108 0.873 1.273 0.046 9.099 94.289   
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Four-Lane Undivided (4U) Segments - Rural Multilane Highways 
 

TABLE C.11: Calibration Factors All Regions (Base Case HSM) – 4U Highways 
Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 81 2.538 5.559 0.000 38.800 205.600 2.309 
Predicted 5 Years Crashes 81 1.099 2.066 0.013 12.128 89.055   
Observed 2017 Crashes 81 2.543 6.101 0.000 47.000 206.000 2.189 
Predicted 2017 Crashes 81 1.162 2.231 0.014 13.242 94.096   
Observed 2016 Crashes 81 2.333 5.324 0.000 35.000 189.000 2.043 
Predicted 2016 Crashes 81 1.142 2.214 0.010 13.119 92.498   
Observed 2015 Crashes 81 2.691 5.553 0.000 30.000 218.000 2.449 
Predicted 2015 Crashes 81 1.099 2.137 0.011 13.053 89.027   
Observed 2014 Crashes 81 2.494 5.509 0.000 36.000 202.000 2.350 
Predicted 2014 Crashes 81 1.061 1.978 0.013 11.278 85.959   
Observed 2013 Crashes 81 2.630 6.323 0.000 46.000 213.000 2.538 
Predicted 2013 Crashes 81 1.036 1.801 0.015 10.003 83.940   

 
TABLE C.12: Calibration Factors All Regions (Base + CMF Adj) – 4U Highways 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 81 2.538 5.559 0.000 38.800 205.600 2.257 
Predicted 5 Years Crashes 81 1.125 2.168 0.013 12.508 91.111   
Observed 2017 Crashes 81 2.543 6.101 0.000 47.000 206.000 2.138 
Predicted 2017 Crashes 81 1.189 2.342 0.014 13.656 96.332   
Observed 2016 Crashes 81 2.333 5.324 0.000 35.000 189.000 1.996 
Predicted 2016 Crashes 81 1.169 2.323 0.010 13.529 94.711   
Observed 2015 Crashes 81 2.691 5.553 0.000 30.000 218.000 2.395 
Predicted 2015 Crashes 81 1.124 2.230 0.011 13.461 91.015   
Observed 2014 Crashes 81 2.494 5.509 0.000 36.000 202.000 2.297 
Predicted 2014 Crashes 81 1.086 2.081 0.013 11.630 87.932   
Observed 2013 Crashes 81 2.630 6.323 0.000 46.000 213.000 2.482 
Predicted 2013 Crashes 81 1.059 1.894 0.015 10.316 85.818   

 
TABLE C.13: Calibration Factors Region 1 (Base Case HSM) – 4U Highways 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 20 5.760 10.123 0.000 38.800 115.200 2.750 
Predicted 5 Years Crashes 20 2.095 3.698 0.186 12.128 41.891   
Observed 2017 Crashes 20 5.900 11.336 0.000 47.000 118.000 2.600 
Predicted 2017 Crashes 20 2.269 4.024 0.196 13.242 45.388   
Observed 2016 Crashes 20 5.500 9.605 0.000 35.000 110.000 2.470 
Predicted 2016 Crashes 20 2.227 3.994 0.195 13.119 44.534   
Observed 2015 Crashes 20 6.000 9.814 0.000 30.000 120.000 2.802 
Predicted 2015 Crashes 20 2.141 3.861 0.184 13.053 42.827   
Observed 2014 Crashes 20 5.450 9.687 0.000 36.000 109.000 2.741 
Predicted 2014 Crashes 20 1.988 3.526 0.171 11.278 39.764   
Observed 2013 Crashes 20 5.950 11.265 0.000 46.000 119.000 3.208 
Predicted 2013 Crashes 20 1.855 3.126 0.175 10.003 37.093   
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TABLE C.14: Calibration Factors Region 1 (Base + CMF Adj) – 4U Highways 
Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 20 5.760 10.123 0.000 38.800 115.200 2.602 
Predicted 5 Years Crashes 20 2.214 3.909 0.176 12.508 44.270   
Observed 2017 Crashes 20 5.900 11.336 0.000 47.000 118.000 2.460 
Predicted 2017 Crashes 20 2.398 4.251 0.185 13.656 47.963   
Observed 2016 Crashes 20 5.500 9.605 0.000 35.000 110.000 2.337 
Predicted 2016 Crashes 20 2.353 4.219 0.185 13.529 47.068   
Observed 2015 Crashes 20 6.000 9.814 0.000 30.000 120.000 2.657 
Predicted 2015 Crashes 20 2.258 4.054 0.174 13.461 45.157   
Observed 2014 Crashes 20 5.450 9.687 0.000 36.000 109.000 2.591 
Predicted 2014 Crashes 20 2.104 3.744 0.168 11.630 42.075   
Observed 2013 Crashes 20 5.950 11.265 0.000 46.000 119.000 3.032 
Predicted 2013 Crashes 20 1.962 3.327 0.166 10.316 39.247   

 
TABLE C.15: Calibration Factors Region 2 (Base Case HSM) – 4U Highways 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 14 1.529 2.103 0.000 7.400 21.400 2.505 
Predicted 5 Years Crashes 14 0.610 0.995 0.083 3.449 8.542   
Observed 2017 Crashes 14 1.571 2.065 0.000 7.000 22.000 2.431 
Predicted 2017 Crashes 14 0.646 1.052 0.094 3.642 9.050   
Observed 2016 Crashes 14 1.071 2.401 0.000 9.000 15.000 1.765 
Predicted 2016 Crashes 14 0.607 0.984 0.088 3.412 8.501   
Observed 2015 Crashes 14 1.786 2.778 0.000 10.000 25.000 2.848 
Predicted 2015 Crashes 14 0.627 1.036 0.076 3.587 8.780   
Observed 2014 Crashes 14 1.643 2.790 0.000 10.000 23.000 2.694 
Predicted 2014 Crashes 14 0.610 1.003 0.073 3.473 8.537   
Observed 2013 Crashes 14 1.571 2.409 0.000 8.000 22.000 2.798 
Predicted 2013 Crashes 14 0.562 0.903 0.085 3.131 7.864   

 
TABLE C.16: Calibration Factors Region 2 (Base + CMF Adj) – 4U Highways 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 14 1.529 2.103 0.000 7.400 21.400 2.480 
Predicted 5 Years Crashes 14 0.616 1.017 0.083 3.518 8.631   
Observed 2017 Crashes 14 1.571 2.065 0.000 7.000 22.000 2.409 
Predicted 2017 Crashes 14 0.652 1.075 0.094 3.716 9.131   
Observed 2016 Crashes 14 1.071 2.401 0.000 9.000 15.000 1.746 
Predicted 2016 Crashes 14 0.614 1.006 0.088 3.481 8.590   
Observed 2015 Crashes 14 1.786 2.778 0.000 10.000 25.000 2.817 
Predicted 2015 Crashes 14 0.634 1.059 0.076 3.660 8.874   
Observed 2014 Crashes 14 1.643 2.790 0.000 10.000 23.000 2.664 
Predicted 2014 Crashes 14 0.617 1.025 0.073 3.544 8.635   
Observed 2013 Crashes 14 1.571 2.409 0.000 8.000 22.000 2.770 
Predicted 2013 Crashes 14 0.567 0.923 0.085 3.194 7.944   
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TABLE C.17: Calibration Factors Region 3 (Base Case HSM) – 4U Highways 
Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 19 1.305 1.553 0.000 5.800 24.800 1.127 
Predicted 5 Years Crashes 19 1.158 1.192 0.139 3.845 21.996   
Observed 2017 Crashes 19 1.158 2.035 0.000 8.000 22.000 0.967 
Predicted 2017 Crashes 19 1.198 1.195 0.165 3.896 22.758   
Observed 2016 Crashes 19 1.526 2.220 0.000 8.000 29.000 1.279 
Predicted 2016 Crashes 19 1.193 1.246 0.139 4.141 22.667   
Observed 2015 Crashes 19 1.684 2.212 0.000 7.000 32.000 1.487 
Predicted 2015 Crashes 19 1.133 1.158 0.135 3.774 21.523   
Observed 2014 Crashes 19 1.053 1.224 0.000 3.000 20.000 0.934 
Predicted 2014 Crashes 19 1.127 1.160 0.133 3.784 21.416   
Observed 2013 Crashes 19 1.105 1.595 0.000 5.000 21.000 0.970 
Predicted 2013 Crashes 19 1.139 1.216 0.125 4.103 21.648   

 
TABLE C.18: Calibration Factors Region 3 (Base + CMF Adj) – 4U Highways 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 19 1.305 1.553 0.000 5.800 24.800 1.174 
Predicted 5 Years Crashes 19 1.112 1.150 0.135 4.001 21.124   
Observed 2017 Crashes 19 1.158 2.035 0.000 8.000 22.000 1.006 
Predicted 2017 Crashes 19 1.151 1.157 0.159 4.054 21.875   
Observed 2016 Crashes 19 1.526 2.220 0.000 8.000 29.000 1.331 
Predicted 2016 Crashes 19 1.147 1.210 0.134 4.309 21.793   
Observed 2015 Crashes 19 1.684 2.212 0.000 7.000 32.000 1.550 
Predicted 2015 Crashes 19 1.086 1.109 0.131 3.670 20.641   
Observed 2014 Crashes 19 1.053 1.224 0.000 3.000 20.000 0.974 
Predicted 2014 Crashes 19 1.081 1.111 0.129 3.709 20.534   
Observed 2013 Crashes 19 1.105 1.595 0.000 5.000 21.000 1.009 
Predicted 2013 Crashes 19 1.095 1.180 0.121 4.269 20.809   

 
 

TABLE C.19: Calibration Factors Region 4 (Base Case HSM) – 4U Highways 
Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 28 1.579 2.341 0.000 11.200 44.200 2.658 
Predicted 5 Years Crashes 28 0.594 0.691 0.013 2.864 16.626   
Observed 2017 Crashes 28 1.571 1.971 0.000 6.000 44.000 2.604 
Predicted 2017 Crashes 28 0.604 0.706 0.014 2.918 16.900   
Observed 2016 Crashes 28 1.250 1.756 0.000 7.000 35.000 2.084 
Predicted 2016 Crashes 28 0.600 0.684 0.010 2.721 16.797   
Observed 2015 Crashes 28 1.464 2.411 0.000 11.000 41.000 2.579 
Predicted 2015 Crashes 28 0.568 0.642 0.011 2.559 15.898   
Observed 2014 Crashes 28 1.786 3.213 0.000 16.000 50.000 3.078 
Predicted 2014 Crashes 28 0.580 0.694 0.013 2.878 16.242   
Observed 2013 Crashes 28 1.821 3.692 0.000 16.000 51.000 2.942 
Predicted 2013 Crashes 28 0.619 0.744 0.015 3.248 17.336   
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TABLE C.20: Calibration Factors Region 4 (Base + CMF Adj) – 4U Highways 
Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 28 1.579 2.341 0.000 11.200 44.200 2.587 
Predicted 5 Years Crashes 28 0.610 0.709 0.013 2.930 17.087   
Observed 2017 Crashes 28 1.571 1.971 0.000 6.000 44.000 2.534 
Predicted 2017 Crashes 28 0.620 0.724 0.014 2.986 17.363   
Observed 2016 Crashes 28 1.250 1.756 0.000 7.000 35.000 2.028 
Predicted 2016 Crashes 28 0.616 0.701 0.010 2.784 17.260   
Observed 2015 Crashes 28 1.464 2.411 0.000 11.000 41.000 2.509 
Predicted 2015 Crashes 28 0.584 0.659 0.011 2.618 16.342   
Observed 2014 Crashes 28 1.786 3.213 0.000 16.000 50.000 2.996 
Predicted 2014 Crashes 28 0.596 0.712 0.013 2.945 16.688   
Observed 2013 Crashes 28 1.821 3.692 0.000 16.000 51.000 2.862 
Predicted 2013 Crashes 28 0.636 0.763 0.015 3.324 17.818   

 
  



 
 

76 
 

Urban and Suburban Arterials 
Two-Lane Undivided (2U) Segments – Urban and Suburban Arterials 

 
TABLE C.21: Calibration Factors All Regions (Base Case HSM) – 2U USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 234 4.128 6.830 0.000 77.00 966.000 4.887 
Predicted 5 Years Crashes 234 0.845 1.126 0.048 11.26 197.651   
Observed 2017 Crashes 234 4.278 7.409 0.000 78.00 1001.000 4.778 
Predicted 2017 Crashes 234 0.895 1.204 0.048 11.83 209.511   
Observed 2016 Crashes 234 4.376 6.895 0.000 66.00 1024.000 5.055 
Predicted 2016 Crashes 234 0.866 1.188 0.050 12.23 202.589   
Observed 2015 Crashes 234 4.150 7.437 0.000 78.00 971.000 4.950 
Predicted 2015 Crashes 234 0.838 1.072 0.049 10.41 196.169   
Observed 2014 Crashes 234 3.970 7.245 0.000 90.00 929.000 4.835 
Predicted 2014 Crashes 234 0.821 1.092 0.045 10.86 192.136   
Observed 2013 Crashes 234 3.829 6.727 0.000 71.00 896.000 4.739 
Predicted 2013 Crashes 234 0.808 1.091 0.047 11.00 189.064   

 
TABLE C.22: Calibration Factors All Regions (Base + CMF Adj) – 2U USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 234 4.128 6.830 0.000 77.00 966.000 4.714 
Predicted 5 Years Crashes 234 0.876 1.138 0.047 11.07 204.916   
Observed 2017 Crashes 234 4.278 7.409 0.000 78.00 1001.000 4.609 
Predicted 2017 Crashes 234 0.928 1.219 0.048 11.63 217.165   
Observed 2016 Crashes 234 4.376 6.895 0.000 66.00 1024.000 4.877 
Predicted 2016 Crashes 234 0.897 1.199 0.049 12.02 209.972   
Observed 2015 Crashes 234 4.150 7.437 0.000 78.00 971.000 4.774 
Predicted 2015 Crashes 234 0.869 1.085 0.047 10.24 203.409   
Observed 2014 Crashes 234 3.970 7.245 0.000 90.00 929.000 4.662 
Predicted 2014 Crashes 234 0.852 1.104 0.043 10.68 199.278   
Observed 2013 Crashes 234 3.829 6.727 0.000 71.00 896.000 4.571 
Predicted 2013 Crashes 234 0.838 1.102 0.048 10.81 196.026   

 
TABLE C.23: Calibration Factors Region 1 (Base Case HSM) – 2U USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 67 3.836 4.096 0.000 21.000 257.000 4.715 
Predicted 5 Years Crashes 67 0.814 0.908 0.048 4.522 54.509   
Observed 2017 Crashes 67 3.522 4.409 0.000 25.000 236.000 4.063 
Predicted 2017 Crashes 67 0.867 1.019 0.048 5.111 58.083   
Observed 2016 Crashes 67 4.209 5.267 0.000 26.000 282.000 5.103 
Predicted 2016 Crashes 67 0.825 0.929 0.050 4.456 55.260   
Observed 2015 Crashes 67 3.851 5.329 0.000 30.000 258.000 4.775 
Predicted 2015 Crashes 67 0.806 0.880 0.049 4.400 54.026   
Observed 2014 Crashes 67 3.522 3.913 0.000 23.000 236.000 4.486 
Predicted 2014 Crashes 67 0.785 0.859 0.045 4.198 52.611   
Observed 2013 Crashes 67 3.896 4.072 0.000 18.000 261.000 4.944 
Predicted 2013 Crashes 67 0.788 0.872 0.047 4.464 52.796   
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TABLE C.24: Calibration Factors Region 1 (Base + CMF Adj) – 2U USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 67 3.836 4.096 0.000 21.000 257.000 4.465 
Predicted 5 Years Crashes 67 0.859 0.958 0.047 4.828 57.558   
Observed 2017 Crashes 67 3.522 4.409 0.000 25.000 236.000 3.847 
Predicted 2017 Crashes 67 0.916 1.079 0.048 5.457 61.340   
Observed 2016 Crashes 67 4.209 5.267 0.000 26.000 282.000 4.836 
Predicted 2016 Crashes 67 0.870 0.981 0.049 4.801 58.319   
Observed 2015 Crashes 67 3.851 5.329 0.000 30.000 258.000 4.525 
Predicted 2015 Crashes 67 0.851 0.926 0.047 4.698 57.017   
Observed 2014 Crashes 67 3.522 3.913 0.000 23.000 236.000 4.243 
Predicted 2014 Crashes 67 0.830 0.906 0.043 4.482 55.624   
Observed 2013 Crashes 67 3.896 4.072 0.000 18.000 261.000 4.682 
Predicted 2013 Crashes 67 0.832 0.918 0.048 4.766 55.740   

 
TABLE C.25: Calibration Factors Region 2 (Base Case HSM) – 2U USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 38 2.947 4.223 0.000 22.000 112.000 4.540 
Predicted 5 Years Crashes 38 0.649 0.880 0.064 5.526 24.671   
Observed 2017 Crashes 38 3.842 6.824 0.000 36.000 146.000 5.792 
Predicted 2017 Crashes 38 0.663 0.921 0.066 5.789 25.207   
Observed 2016 Crashes 38 3.000 4.690 0.000 25.000 114.000 4.583 
Predicted 2016 Crashes 38 0.655 0.861 0.068 5.389 24.875   
Observed 2015 Crashes 38 2.842 3.760 0.000 18.000 108.000 4.306 
Predicted 2015 Crashes 38 0.660 0.876 0.064 5.461 25.080   
Observed 2014 Crashes 38 2.684 3.488 0.000 15.000 102.000 4.177 
Predicted 2014 Crashes 38 0.643 0.897 0.063 5.651 24.418   
Observed 2013 Crashes 38 2.632 4.123 0.000 23.000 100.000 4.193 
Predicted 2013 Crashes 38 0.628 0.850 0.061 5.344 23.848   

 
 

TABLE C.26: Calibration Factors Region 2 (Base + CMF Adj) – 2U USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 38 2.947 4.223 0.000 22.000 112.000 4.185 
Predicted 5 Years Crashes 38 0.704 0.969 0.057 6.073 26.760   
Observed 2017 Crashes 38 3.842 6.824 0.000 36.000 146.000 5.349 
Predicted 2017 Crashes 38 0.718 1.011 0.059 6.361 27.294   
Observed 2016 Crashes 38 3.000 4.690 0.000 25.000 114.000 4.224 
Predicted 2016 Crashes 38 0.710 0.950 0.060 5.922 26.991   
Observed 2015 Crashes 38 2.842 3.760 0.000 18.000 108.000 3.971 
Predicted 2015 Crashes 38 0.716 0.965 0.056 6.002 27.200   
Observed 2014 Crashes 38 2.684 3.488 0.000 15.000 102.000 3.848 
Predicted 2014 Crashes 38 0.698 0.989 0.056 6.211 26.508   
Observed 2013 Crashes 38 2.632 4.123 0.000 23.000 100.000 3.863 
Predicted 2013 Crashes 38 0.681 0.937 0.054 5.873 25.886   
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TABLE C.27: Calibration Factors Region 3 (Base Case HSM) – 2U USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 88 5.909 9.801 0.000 77.000 520.000 5.142 
Predicted 5 Years Crashes 88 1.149 1.480 0.095 11.258 101.130   
Observed 2017 Crashes 88 6.227 10.096 0.000 78.000 548.000 5.102 
Predicted 2017 Crashes 88 1.221 1.565 0.102 11.829 107.417   
Observed 2016 Crashes 88 6.068 9.351 0.000 66.000 534.000 5.094 
Predicted 2016 Crashes 88 1.191 1.591 0.098 12.228 104.833   
Observed 2015 Crashes 88 6.057 10.530 0.000 78.000 533.000 5.324 
Predicted 2015 Crashes 88 1.138 1.387 0.097 10.409 100.114   
Observed 2014 Crashes 88 5.739 10.718 0.000 90.000 505.000 5.137 
Predicted 2014 Crashes 88 1.117 1.435 0.088 10.865 98.312   
Observed 2013 Crashes 88 5.364 9.703 0.000 71.000 472.000 4.935 
Predicted 2013 Crashes 88 1.087 1.446 0.089 10.996 95.647   

 
TABLE C.28: Calibration Factors Region 3 (Base + CMF Adj) – 2U USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 88 5.909 9.801 0.000 77.000 520.000 5.079 
Predicted 5 Years Crashes 88 1.163 1.458 0.090 11.071 102.376   
Observed 2017 Crashes 88 6.227 10.096 0.000 78.000 548.000 5.037 
Predicted 2017 Crashes 88 1.236 1.541 0.097 11.632 108.787   
Observed 2016 Crashes 88 6.068 9.351 0.000 66.000 534.000 5.032 
Predicted 2016 Crashes 88 1.206 1.569 0.093 12.025 106.128   
Observed 2015 Crashes 88 6.057 10.530 0.000 78.000 533.000 5.257 
Predicted 2015 Crashes 88 1.152 1.365 0.092 10.236 101.389   
Observed 2014 Crashes 88 5.739 10.718 0.000 90.000 505.000 5.075 
Predicted 2014 Crashes 88 1.131 1.412 0.083 10.684 99.509   
Observed 2013 Crashes 88 5.364 9.703 0.000 71.000 472.000 4.878 
Predicted 2013 Crashes 88 1.100 1.425 0.084 10.813 96.758   

 
TABLE C.29: Calibration Factors Region 4 (Base Case HSM) – 2U Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 41 1.878 2.238 0.000 10.000 77.000 4.440 
Predicted 5 Years Crashes 41 0.423 0.339 0.057 1.719 17.342   
Observed 2017 Crashes 41 1.732 2.608 0.000 14.000 71.000 3.776 
Predicted 2017 Crashes 41 0.459 0.375 0.055 1.900 18.802   
Observed 2016 Crashes 41 2.293 2.831 0.000 11.000 94.000 5.335 
Predicted 2016 Crashes 41 0.430 0.355 0.055 1.865 17.620   
Observed 2015 Crashes 41 1.756 2.321 0.000 10.000 72.000 4.248 
Predicted 2015 Crashes 41 0.413 0.338 0.058 1.618 16.949   
Observed 2014 Crashes 41 2.098 2.644 0.000 10.000 86.000 5.121 
Predicted 2014 Crashes 41 0.410 0.337 0.059 1.759 16.795   
Observed 2013 Crashes 41 1.537 1.951 0.000 9.000 63.000 3.756 
Predicted 2013 Crashes 41 0.409 0.313 0.055 1.469 16.773   
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TABLE C.30: Calibration Factors Region 4 (Base + CMF Adj) – 2U USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 41 1.878 2.238 0.000 10.00 77.000 4.226 
Predicted 5 Years Crashes 41 0.444 0.368 0.058 1.93 18.222   
Observed 2017 Crashes 41 1.732 2.608 0.000 14.00 71.000 3.596 
Predicted 2017 Crashes 41 0.482 0.407 0.056 2.13 19.744   
Observed 2016 Crashes 41 2.293 2.831 0.000 11.00 94.000 5.072 
Predicted 2016 Crashes 41 0.452 0.385 0.056 2.09 18.534   
Observed 2015 Crashes 41 1.756 2.321 0.000 10.00 72.000 4.044 
Predicted 2015 Crashes 41 0.434 0.366 0.059 1.82 17.803   
Observed 2014 Crashes 41 2.098 2.644 0.000 10.00 86.000 4.876 
Predicted 2014 Crashes 41 0.430 0.366 0.060 1.98 17.636   
Observed 2013 Crashes 41 1.537 1.951 0.000 9.00 63.000 3.571 
Predicted 2013 Crashes 41 0.430 0.338 0.056 1.65 17.641   
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Two-Lane Undivided (2U) Segments – Urban and Suburban Arterials 
 

TABLE C.31: Calibration Factors All Regions (Base Case HSM) – 3T USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 80 5.800 9.188 0.000 62.00 464.000 5.920 
Predicted 5 Years Crashes 80 0.980 1.093 0.031 6.44 78.374   
Observed 2017 Crashes 80 5.900 8.868 0.000 47.00 472.000 5.711 
Predicted 2017 Crashes 80 1.033 1.144 0.030 6.67 82.642   
Observed 2016 Crashes 80 5.938 9.518 0.000 66.00 475.000 5.984 
Predicted 2016 Crashes 80 0.992 1.110 0.030 6.53 79.383   
Observed 2015 Crashes 80 5.963 10.660 0.000 72.00 477.000 6.112 
Predicted 2015 Crashes 80 0.975 1.103 0.031 6.53 78.039   
Observed 2014 Crashes 80 5.713 8.971 0.000 58.00 457.000 5.985 
Predicted 2014 Crashes 80 0.954 1.050 0.029 6.25 76.358   
Observed 2013 Crashes 80 5.400 9.547 0.000 65.00 432.000 5.813 
Predicted 2013 Crashes 80 0.929 1.040 0.041 5.82 74.312   

 
TABLE C.32: Calibration Factors All Regions (Base + CMF Adj) – 3T USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 80 5.800 9.188 0.000 62.00 464.000 5.823 
Predicted 5 Years Crashes 80 0.996 1.159 0.000 6.76 79.689   
Observed 2017 Crashes 80 5.900 8.868 0.000 47.00 472.000 5.617 
Predicted 2017 Crashes 80 1.050 1.218 0.000 7.00 84.024   
Observed 2016 Crashes 80 5.938 9.518 0.000 66.00 475.000 5.888 
Predicted 2016 Crashes 80 1.008 1.180 0.000 6.85 80.678   
Observed 2015 Crashes 80 5.963 10.660 0.000 72.00 477.000 6.006 
Predicted 2015 Crashes 80 0.993 1.170 0.000 6.85 79.422   
Observed 2014 Crashes 80 5.713 8.971 0.000 58.00 457.000 5.891 
Predicted 2014 Crashes 80 0.970 1.113 0.000 6.56 77.580   
Observed 2013 Crashes 80 5.400 9.547 0.000 65.00 432.000 5.706 
Predicted 2013 Crashes 80 0.946 1.095 0.000 6.11 75.707   

 
TABLE C.33: Calibration Factors Region 1 (Base Case HSM) – 3T USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 22 3.909 5.681 0.000 26.00 86.000 3.201 
Predicted 5 Years Crashes 22 1.221 1.614 0.061 6.45 26.867   
Observed 2017 Crashes 22 2.909 4.011 0.000 16.00 64.000 2.229 
Predicted 2017 Crashes 22 1.305 1.706 0.067 6.68 28.715   
Observed 2016 Crashes 22 4.091 6.179 0.000 25.00 90.000 3.298 
Predicted 2016 Crashes 22 1.240 1.630 0.056 6.53 27.291   
Observed 2015 Crashes 22 4.545 9.334 0.000 44.00 100.000 3.720 
Predicted 2015 Crashes 22 1.222 1.643 0.065 6.53 26.881   
Observed 2014 Crashes 22 3.455 4.160 0.000 16.00 76.000 2.935 
Predicted 2014 Crashes 22 1.177 1.564 0.056 6.25 25.899   
Observed 2013 Crashes 22 4.136 6.120 0.000 27.00 91.000 3.750 
Predicted 2013 Crashes 22 1.103 1.426 0.059 5.82 24.264   
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TABLE C.34: Calibration Factors Region 1 (Base + CMF Adj) – 3T USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 22 3.909 5.681 0.000 26.00 86.000 3.130 
Predicted 5 Years Crashes 22 1.249 1.754 0.000 6.76 27.472   
Observed 2017 Crashes 22 2.909 4.011 0.000 16.00 64.000 2.180 
Predicted 2017 Crashes 22 1.334 1.863 0.000 7.00 29.354   
Observed 2016 Crashes 22 4.091 6.179 0.000 25.00 90.000 3.217 
Predicted 2016 Crashes 22 1.271 1.780 0.000 6.85 27.973   
Observed 2015 Crashes 22 4.545 9.334 0.000 44.00 100.000 3.619 
Predicted 2015 Crashes 22 1.256 1.784 0.000 6.85 27.630   
Observed 2014 Crashes 22 3.455 4.160 0.000 16.00 76.000 2.878 
Predicted 2014 Crashes 22 1.200 1.694 0.000 6.56 26.404   
Observed 2013 Crashes 22 4.136 6.120 0.000 27.00 91.000 3.673 
Predicted 2013 Crashes 22 1.126 1.549 0.000 6.11 24.776   

 
TABLE C.35: Calibration Factors Region 2 (Base Case HSM) – 3T USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 16 5.188 5.811 0.000 21.00 83.000 8.811 
Predicted 5 Years Crashes 16 0.589 0.549 0.049 1.97 9.420   
Observed 2017 Crashes 16 5.688 7.255 0.000 23.00 91.000 9.133 
Predicted 2017 Crashes 16 0.623 0.578 0.048 2.12 9.963   
Observed 2016 Crashes 16 5.375 6.791 0.000 25.00 86.000 9.112 
Predicted 2016 Crashes 16 0.590 0.513 0.046 1.97 9.438   
Observed 2015 Crashes 16 4.688 5.425 0.000 17.00 75.000 8.244 
Predicted 2015 Crashes 16 0.569 0.514 0.063 1.95 9.098   
Observed 2014 Crashes 16 6.438 7.014 0.000 25.00 103.000 10.694 
Predicted 2014 Crashes 16 0.602 0.573 0.045 2.00 9.632   
Observed 2013 Crashes 16 4.500 4.733 0.000 17.00 72.000 7.745 
Predicted 2013 Crashes 16 0.581 0.564 0.045 1.98 9.296   

 
TABLE C.36: Calibration Factors Region 2 (Base + CMF Adj) – 3T USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 16 5.188 5.811 0.000 21.00 83.000 8.921 
Predicted 5 Years Crashes 16 0.581 0.591 0.000 2.07 9.304   
Observed 2017 Crashes 16 5.688 7.255 0.000 23.00 91.000 9.245 
Predicted 2017 Crashes 16 0.615 0.621 0.000 2.22 9.843   
Observed 2016 Crashes 16 5.375 6.791 0.000 25.00 86.000 9.333 
Predicted 2016 Crashes 16 0.576 0.556 0.000 2.07 9.215   
Observed 2015 Crashes 16 4.688 5.425 0.000 17.00 75.000 8.410 
Predicted 2015 Crashes 16 0.557 0.556 0.000 2.05 8.918   
Observed 2014 Crashes 16 6.438 7.014 0.000 25.00 103.000 10.835 
Predicted 2014 Crashes 16 0.594 0.615 0.000 2.10 9.507   
Observed 2013 Crashes 16 4.500 4.733 0.000 17.00 72.000 7.685 
Predicted 2013 Crashes 16 0.586 0.600 0.000 1.99 9.369   
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TABLE C.37: Calibration Factors Region 3 (Base Case HSM) – 3T USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 34 7.324 12.075 0.000 62.00 249.000 6.563 
Predicted 5 Years Crashes 34 1.116 0.907 0.098 4.36 37.937   
Observed 2017 Crashes 34 7.853 11.160 0.000 47.00 267.000 6.701 
Predicted 2017 Crashes 34 1.172 0.925 0.144 4.40 39.844   
Observed 2016 Crashes 34 7.324 12.271 0.000 66.00 249.000 6.445 
Predicted 2016 Crashes 34 1.136 0.941 0.087 4.36 38.637   
Observed 2015 Crashes 34 7.500 13.258 0.000 72.00 255.000 6.735 
Predicted 2015 Crashes 34 1.114 0.901 0.090 4.40 37.863   
Observed 2014 Crashes 34 6.824 11.856 0.000 58.00 232.000 6.367 
Predicted 2014 Crashes 34 1.072 0.845 0.080 3.98 36.438   
Observed 2013 Crashes 34 6.794 13.131 0.000 65.00 231.000 6.275 
Predicted 2013 Crashes 34 1.083 0.973 0.100 5.00 36.810   

 
TABLE C.38: Calibration Factors Region 3 (Base + CMF Adj) – 3T USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 34 7.324 12.075 0.000 62.00 249.000 6.468 
Predicted 5 Years Crashes 34 1.132 0.918 0.093 4.38 38.495   
Observed 2017 Crashes 34 7.853 11.160 0.000 47.00 267.000 6.602 
Predicted 2017 Crashes 34 1.189 0.937 0.137 4.41 40.442   
Observed 2016 Crashes 34 7.324 12.271 0.000 66.00 249.000 6.350 
Predicted 2016 Crashes 34 1.153 0.953 0.082 4.37 39.214   
Observed 2015 Crashes 34 7.500 13.258 0.000 72.00 255.000 6.638 
Predicted 2015 Crashes 34 1.130 0.912 0.086 4.42 38.416   
Observed 2014 Crashes 34 6.824 11.856 0.000 58.00 232.000 6.274 
Predicted 2014 Crashes 34 1.088 0.857 0.075 3.99 36.977   
Observed 2013 Crashes 34 6.794 13.131 0.000 65.00 231.000 6.182 
Predicted 2013 Crashes 34 1.099 0.985 0.095 5.02 37.369   

 
TABLE C.39: Calibration Factors Region 4 (Base Case HSM) – 3T Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 8 5.750 8.531 0.000 26.00 46.000 11.085 
Predicted 5 Years Crashes 8 0.519 0.537 0.031 1.71 4.150   
Observed 2017 Crashes 8 6.250 9.618 0.000 29.00 50.000 12.137 
Predicted 2017 Crashes 8 0.515 0.515 0.030 1.65 4.120   
Observed 2016 Crashes 8 6.250 8.844 0.000 27.00 50.000 12.446 
Predicted 2016 Crashes 8 0.502 0.498 0.030 1.59 4.017   
Observed 2015 Crashes 8 5.875 10.385 0.000 31.00 47.000 11.196 
Predicted 2015 Crashes 8 0.525 0.590 0.031 1.88 4.198   
Observed 2014 Crashes 8 5.750 8.067 0.000 24.00 46.000 10.479 
Predicted 2014 Crashes 8 0.549 0.578 0.029 1.83 4.390   
Observed 2013 Crashes 8 4.750 6.228 0.000 19.00 38.000 9.640 
Predicted 2013 Crashes 8 0.493 0.506 0.041 1.61 3.942   

 
  



 
 

83 
 

TABLE C.40: Calibration Factors Region 4 (Base + CMF Adj) – 3T USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 8 5.750 8.531 0.000 26.000 46.000 10.411 
Predicted 5 Years Crashes 8 0.552 0.555 0.031 1.787 4.419   
Observed 2017 Crashes 8 6.250 9.618 0.000 29.000 50.000 11.402 
Predicted 2017 Crashes 8 0.548 0.531 0.030 1.720 4.385   
Observed 2016 Crashes 8 6.250 8.844 0.000 27.000 50.000 11.693 
Predicted 2016 Crashes 8 0.535 0.514 0.030 1.662 4.276   
Observed 2015 Crashes 8 5.875 10.385 0.000 31.000 47.000 10.541 
Predicted 2015 Crashes 8 0.557 0.611 0.031 1.959 4.459   
Observed 2014 Crashes 8 5.750 8.067 0.000 24.000 46.000 9.804 
Predicted 2014 Crashes 8 0.587 0.601 0.029 1.910 4.692   
Observed 2013 Crashes 8 4.750 6.228 0.000 19.000 38.000 9.061 
Predicted 2013 Crashes 8 0.524 0.524 0.041 1.681 4.194   
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Four-Lane Divided (4D) Segments – Urban and Suburban Arterials 
 

TABLE C.41: Calibration Factors All Regions (Base Case HSM) – 4D USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 278 5.471 9.855 0.000 130.00 1521.000 4.126 
Predicted 5 Years Crashes 278 1.326 1.463 0.051 10.94 368.629   
Observed 2017 Crashes 278 5.550 10.675 0.000 143.00 1543.000 3.940 
Predicted 2017 Crashes 278 1.409 1.601 0.051 13.09 391.621   
Observed 2016 Crashes 278 5.450 11.351 0.000 151.00 1515.000 4.049 
Predicted 2016 Crashes 278 1.346 1.481 0.052 10.70 374.185   
Observed 2015 Crashes 278 5.356 9.582 0.000 119.00 1489.000 4.020 
Predicted 2015 Crashes 278 1.333 1.452 0.053 10.57 370.444   
Observed 2014 Crashes 278 5.640 10.093 0.000 130.00 1568.000 4.413 
Predicted 2014 Crashes 278 1.278 1.419 0.048 10.58 355.347   
Observed 2013 Crashes 278 5.417 9.081 0.000 107.00 1506.000 4.269 
Predicted 2013 Crashes 278 1.269 1.391 0.053 9.84 352.739   

 
TABLE C.42: Calibration Factors All Regions (Base + CMF Adj) – 4D USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 278 5.471 9.855 0 130.00 1521.000 4.459 
Predicted 5 Years Crashes 278 1.227 1.400 0 10.66 341.075   
Observed 2017 Crashes 278 5.550 10.675 0 143.00 1543.000 4.257 
Predicted 2017 Crashes 278 1.304 1.537 0 12.75 362.458   
Observed 2016 Crashes 278 5.450 11.351 0 151.00 1515.000 4.375 
Predicted 2016 Crashes 278 1.246 1.418 0 10.43 346.262   
Observed 2015 Crashes 278 5.356 9.582 0 119.00 1489.000 4.347 
Predicted 2015 Crashes 278 1.232 1.391 0 10.30 342.569   
Observed 2014 Crashes 278 5.640 10.093 0 130.00 1568.000 4.769 
Predicted 2014 Crashes 278 1.183 1.355 0 10.31 328.758   
Observed 2013 Crashes 278 5.417 9.081 0 107.00 1506.000 4.613 
Predicted 2013 Crashes 278 1.174 1.328 0 9.59 326.450   

 
TABLE C.43: Calibration Factors Region 1 (Base Case HSM) – 4D USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 114 5.070 5.306 0.000 33.000 578.000 3.375 
Predicted 5 Years Crashes 114 1.502 1.487 0.157 7.267 171.282   
Observed 2017 Crashes 114 5.228 6.462 0.000 37.000 596.000 3.243 
Predicted 2017 Crashes 114 1.612 1.635 0.169 8.618 183.790   
Observed 2016 Crashes 114 4.754 5.568 0.000 36.000 542.000 3.117 
Predicted 2016 Crashes 114 1.525 1.487 0.169 6.888 173.859   
Observed 2015 Crashes 114 4.588 4.802 0.000 29.000 523.000 3.046 
Predicted 2015 Crashes 114 1.506 1.480 0.149 7.429 171.714   
Observed 2014 Crashes 114 5.386 5.780 0.000 30.000 614.000 3.731 
Predicted 2014 Crashes 114 1.443 1.453 0.148 7.084 164.549   
Observed 2013 Crashes 114 5.509 6.343 0.000 34.000 628.000 3.853 
Predicted 2013 Crashes 114 1.430 1.407 0.148 6.799 162.998   
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TABLE C.44: Calibration Factors Region 1 (Base + CMF Adj) – 4D USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 114 5.070 5.306 0.000 33.000 578.000 3.822 
Predicted 5 Years Crashes 114 1.326 1.425 0.000 7.045 151.215   
Observed 2017 Crashes 114 5.228 6.462 0.000 37.000 596.000 3.670 
Predicted 2017 Crashes 114 1.425 1.575 0.000 8.355 162.399   
Observed 2016 Crashes 114 4.754 5.568 0.000 36.000 542.000 3.534 
Predicted 2016 Crashes 114 1.345 1.422 0.000 6.678 153.383   
Observed 2015 Crashes 114 4.588 4.802 0.000 29.000 523.000 3.456 
Predicted 2015 Crashes 114 1.327 1.419 0.000 7.202 151.330   
Observed 2014 Crashes 114 5.386 5.780 0.000 30.000 614.000 4.225 
Predicted 2014 Crashes 114 1.275 1.391 0.000 6.696 145.318   
Observed 2013 Crashes 114 5.509 6.343 0.000 34.000 628.000 4.358 
Predicted 2013 Crashes 114 1.264 1.346 0.000 6.426 144.097   

 
TABLE C.45: Calibration Factors Region 2 (Base Case HSM) – 4D USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 41 4.707 7.205 0 34.000 193.000 4.475 
Predicted 5 Years Crashes 41 1.052 1.156 0.11 4.772 43.132   
Observed 2017 Crashes 41 5.024 7.923 0 31.000 206.000 4.675 
Predicted 2017 Crashes 41 1.075 1.195 0.12 5.017 44.061   
Observed 2016 Crashes 41 4.171 6.473 0 30.000 171.000 3.893 
Predicted 2016 Crashes 41 1.071 1.231 0.12 5.249 43.928   
Observed 2015 Crashes 41 4.854 6.937 0 26.000 199.000 4.449 
Predicted 2015 Crashes 41 1.091 1.222 0.11 5.187 44.730   
Observed 2014 Crashes 41 4.878 8.219 0 39.000 200.000 4.772 
Predicted 2014 Crashes 41 1.022 1.091 0.09 4.456 41.914   
Observed 2013 Crashes 41 4.927 8.296 0 44.000 202.000 4.912 
Predicted 2013 Crashes 41 1.003 1.057 0.1 4.239 41.127   

 
TABLE C.46: Calibration Factors Region 2 (Base + CMF Adj) – 4D USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 41 4.707 7.205 0 34.000 193.000 4.468 
Predicted 5 Years Crashes 41 1.054 1.175 0 5.018 43.198   
Observed 2017 Crashes 41 5.024 7.923 0 31.000 206.000 4.670 
Predicted 2017 Crashes 41 1.076 1.213 0 5.276 44.109   
Observed 2016 Crashes 41 4.171 6.473 0 30.000 171.000 3.884 
Predicted 2016 Crashes 41 1.074 1.255 0 5.520 44.026   
Observed 2015 Crashes 41 4.854 6.937 0 26.000 199.000 4.442 
Predicted 2015 Crashes 41 1.093 1.243 0 5.455 44.796   
Observed 2014 Crashes 41 4.878 8.219 0 39.000 200.000 4.764 
Predicted 2014 Crashes 41 1.024 1.106 0 4.495 41.978   
Observed 2013 Crashes 41 4.927 8.296 0 44.000 202.000 4.905 
Predicted 2013 Crashes 41 1.005 1.074 0 4.375 41.186   

 
  



 
 

86 
 

TABLE C.47: Calibration Factors Region 3 (Base Case HSM) – 4D USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 59 8.576 17.708 0.000 130.000 506.000 6.242 
Predicted 5 Years Crashes 59 1.374 1.782 0.057 10.942 81.066   
Observed 2017 Crashes 59 8.797 19.233 0.000 143.000 519.000 5.797 
Predicted 2017 Crashes 59 1.518 2.036 0.057 13.086 89.535   
Observed 2016 Crashes 59 9.068 20.609 0.000 151.000 535.000 6.520 
Predicted 2016 Crashes 59 1.391 1.795 0.057 10.699 82.050   
Observed 2015 Crashes 59 8.593 16.703 0.000 119.000 507.000 6.339 
Predicted 2015 Crashes 59 1.356 1.728 0.057 10.569 79.984   
Observed 2014 Crashes 59 8.475 17.946 0.000 130.000 500.000 6.449 
Predicted 2014 Crashes 59 1.314 1.720 0.057 10.579 77.528   
Observed 2013 Crashes 59 7.847 15.014 0.000 107.000 463.000 6.047 
Predicted 2013 Crashes 59 1.298 1.661 0.057 9.844 76.569   

 
TABLE C.48: Calibration Factors Region 3 (Base + CMF Adj) – 4D USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 59 8.576 17.708 0.000 130.000 506.000 6.467 
Predicted 5 Years Crashes 59 1.326 1.694 0.055 10.664 78.244   
Observed 2017 Crashes 59 8.797 19.233 0.000 143.000 519.000 6.002 
Predicted 2017 Crashes 59 1.466 1.943 0.056 12.754 86.468   
Observed 2016 Crashes 59 9.068 20.609 0.000 151.000 535.000 6.752 
Predicted 2016 Crashes 59 1.343 1.703 0.055 10.427 79.232   
Observed 2015 Crashes 59 8.593 16.703 0.000 119.000 507.000 6.567 
Predicted 2015 Crashes 59 1.309 1.643 0.056 10.301 77.207   
Observed 2014 Crashes 59 8.475 17.946 0.000 130.000 500.000 6.683 
Predicted 2014 Crashes 59 1.268 1.633 0.055 10.311 74.817   
Observed 2013 Crashes 59 7.847 15.014 0.000 107.000 463.000 6.272 
Predicted 2013 Crashes 59 1.251 1.572 0.056 9.594 73.819   

 
TABLE C.49: Calibration Factors Region 4 (Base Case HSM) – 4D USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 64 3.813 6.510 0.000 37.000 244.000 3.336 
Predicted 5 Years Crashes 64 1.143 1.237 0.051 7.167 73.149   
Observed 2017 Crashes 64 3.469 5.578 0.000 34.000 222.000 2.991 
Predicted 2017 Crashes 64 1.160 1.238 0.051 7.182 74.235   
Observed 2016 Crashes 64 4.172 8.799 0.000 57.000 267.000 3.591 
Predicted 2016 Crashes 64 1.162 1.268 0.052 7.276 74.347   
Observed 2015 Crashes 64 4.063 7.884 0.000 40.000 260.000 3.513 
Predicted 2015 Crashes 64 1.156 1.234 0.053 7.059 74.015   
Observed 2014 Crashes 64 3.969 6.146 0.000 30.000 254.000 3.560 
Predicted 2014 Crashes 64 1.115 1.209 0.048 7.019 71.354   
Observed 2013 Crashes 64 3.328 5.393 0.000 31.000 213.000 2.957 
Predicted 2013 Crashes 64 1.126 1.262 0.053 7.302 72.044   
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TABLE C.50: Calibration Factors Region 4 (Base + CMF Adj) – 4D USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 64 3.813 6.510 0 37.000 244.000 3.566 
Predicted 5 Years Crashes 64 1.069 1.179 0 6.822 68.418   
Observed 2017 Crashes 64 3.469 5.578 0 34.000 222.000 3.195 
Predicted 2017 Crashes 64 1.086 1.182 0 6.836 69.482   
Observed 2016 Crashes 64 4.172 8.799 0 57.000 267.000 3.835 
Predicted 2016 Crashes 64 1.088 1.215 0 6.925 69.622   
Observed 2015 Crashes 64 4.063 7.884 0 40.000 260.000 3.755 
Predicted 2015 Crashes 64 1.082 1.174 0 6.719 69.236   
Observed 2014 Crashes 64 3.969 6.146 0 30.000 254.000 3.811 
Predicted 2014 Crashes 64 1.041 1.148 0 6.681 66.645   
Observed 2013 Crashes 64 3.328 5.393 0 31.000 213.000 3.163 
Predicted 2013 Crashes 64 1.052 1.202 0 6.950 67.348   
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Four-Lane Undivided (4U) Segments – Urban and Suburban Arterials 
 

TABLE C.51: Calibration Factors All Regions (Base Case HSM) – 4U USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 80 10.080 16.760 0.000 98.00 806.400 8.089 
Predicted 5 Years Crashes 80 1.246 1.426 0.085 9.72 99.691   
Observed 2017 Crashes 80 9.875 15.501 0.000 85.00 790.000 7.709 
Predicted 2017 Crashes 80 1.281 1.499 0.085 10.38 102.480   
Observed 2016 Crashes 80 11.625 29.346 0.000 238.00 930.000 9.152 
Predicted 2016 Crashes 80 1.270 1.514 0.084 10.74 101.619   
Observed 2015 Crashes 80 10.700 18.277 0.000 114.00 856.000 8.592 
Predicted 2015 Crashes 80 1.245 1.391 0.090 9.09 99.622   
Observed 2014 Crashes 80 9.700 15.613 0.000 76.00 776.000 7.957 
Predicted 2014 Crashes 80 1.219 1.351 0.080 8.55 97.526   
Observed 2013 Crashes 80 8.500 12.168 0.000 55.00 680.000 6.829 
Predicted 2013 Crashes 80 1.245 1.490 0.080 10.16 99.578   

 
TABLE C.52: Calibration Factors All Regions (Base + CMF Adj) – 4U USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 80 10.080 16.760 0.000 98.00 806.400 7.633 
Predicted 5 Years Crashes 80 1.321 1.483 0.081 9.60 105.642   
Observed 2017 Crashes 80 9.875 15.501 0.000 85.00 790.000 7.277 
Predicted 2017 Crashes 80 1.357 1.557 0.081 10.26 108.566   
Observed 2016 Crashes 80 11.625 29.346 0.000 238.00 930.000 8.639 
Predicted 2016 Crashes 80 1.346 1.576 0.080 10.61 107.655   
Observed 2015 Crashes 80 10.700 18.277 0.000 114.00 856.000 8.109 
Predicted 2015 Crashes 80 1.320 1.451 0.086 8.98 105.562   
Observed 2014 Crashes 80 9.700 15.613 0.000 76.00 776.000 7.494 
Predicted 2014 Crashes 80 1.294 1.418 0.077 8.45 103.554   
Observed 2013 Crashes 80 8.500 12.168 0.000 55.00 680.000 6.447 
Predicted 2013 Crashes 80 1.318 1.548 0.077 10.04 105.480   

 
TABLE C.53: Calibration Factors Region 1 (Base Case HSM) – 4U USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 14 8.871 10.757 0.200 31.20 124.200 6.107 
Predicted 5 Years Crashes 14 1.453 1.118 0.379 3.59 20.337   
Observed 2017 Crashes 14 9.429 11.745 0.000 39.00 132.000 6.227 
Predicted 2017 Crashes 14 1.514 1.113 0.437 3.61 21.198   
Observed 2016 Crashes 14 8.000 9.207 0.000 29.00 112.000 5.370 
Predicted 2016 Crashes 14 1.490 1.112 0.411 3.57 20.858   
Observed 2015 Crashes 14 10.214 13.045 0.000 44.00 143.000 6.957 
Predicted 2015 Crashes 14 1.468 1.140 0.382 3.52 20.554   
Observed 2014 Crashes 14 9.857 13.002 0.000 38.00 138.000 7.066 
Predicted 2014 Crashes 14 1.395 1.093 0.335 3.48 19.530   
Observed 2013 Crashes 14 6.857 9.071 0.000 24.00 96.000 4.758 
Predicted 2013 Crashes 14 1.441 1.219 0.331 3.88 20.176   
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TABLE C.54: Calibration Factors Region 1 (Base + CMF Adj) – 4U USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 14 8.871 10.757 0.200 31.20 124.200 5.658 
Predicted 5 Years Crashes 14 1.568 1.247 0.375 3.78 21.952   
Observed 2017 Crashes 14 9.429 11.745 0.000 39.00 132.000 5.770 
Predicted 2017 Crashes 14 1.634 1.242 0.422 3.83 22.878   
Observed 2016 Crashes 14 8.000 9.207 0.000 29.00 112.000 4.984 
Predicted 2016 Crashes 14 1.605 1.236 0.397 3.80 22.472   
Observed 2015 Crashes 14 10.214 13.045 0.000 44.00 143.000 6.446 
Predicted 2015 Crashes 14 1.585 1.273 0.362 3.86 22.184   
Observed 2014 Crashes 14 9.857 13.002 0.000 38.00 138.000 6.537 
Predicted 2014 Crashes 14 1.508 1.229 0.332 3.79 21.111   
Observed 2013 Crashes 14 6.857 9.071 0.000 24.00 96.000 4.403 
Predicted 2013 Crashes 14 1.557 1.355 0.328 4.04 21.803   

 
TABLE C.55: Calibration Factors Region 2 (Base Case HSM) – 4U USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 16 10.125 13.039 0.600 46.400 162.000 12.447 
Predicted 5 Years Crashes 16 0.813 0.966 0.195 4.308 13.015   
Observed 2017 Crashes 16 10.563 12.982 0.000 46.000 169.000 12.541 
Predicted 2017 Crashes 16 0.842 1.064 0.194 4.729 13.475   
Observed 2016 Crashes 16 8.500 10.469 1.000 38.000 136.000 10.299 
Predicted 2016 Crashes 16 0.825 0.955 0.192 4.244 13.205   
Observed 2015 Crashes 16 10.625 15.409 0.000 60.000 170.000 13.584 
Predicted 2015 Crashes 16 0.782 0.903 0.171 4.031 12.515   
Observed 2014 Crashes 16 10.250 17.113 0.000 59.000 164.000 12.730 
Predicted 2014 Crashes 16 0.805 1.039 0.169 4.586 12.883   
Observed 2013 Crashes 16 10.688 11.429 0.000 42.000 171.000 13.123 
Predicted 2013 Crashes 16 0.814 0.999 0.201 4.412 13.030   

 
TABLE C.56: Calibration Factors Region 2 (Base + CMF Adj) – 4U USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 16 10.125 13.039 0.600 46.400 162.000 11.404 
Predicted 5 Years Crashes 16 0.888 1.004 0.211 4.458 14.206   
Observed 2017 Crashes 16 10.563 12.982 0.000 46.000 169.000 11.523 
Predicted 2017 Crashes 16 0.917 1.102 0.210 4.894 14.667   
Observed 2016 Crashes 16 8.500 10.469 1.000 38.000 136.000 9.466 
Predicted 2016 Crashes 16 0.898 0.989 0.208 4.393 14.367   
Observed 2015 Crashes 16 10.625 15.409 0.000 60.000 170.000 12.403 
Predicted 2015 Crashes 16 0.857 0.944 0.185 4.172 13.706   
Observed 2014 Crashes 16 10.250 17.113 0.000 59.000 164.000 11.635 
Predicted 2014 Crashes 16 0.881 1.083 0.183 4.747 14.095   
Observed 2013 Crashes 16 10.688 11.429 0.000 42.000 171.000 12.049 
Predicted 2013 Crashes 16 0.887 1.040 0.219 4.566 14.193   
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TABLE C.57: Calibration Factors Region 3 (Base Case HSM) – 4U USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 20 12.650 23.969 0.200 98.00 253.000 8.869 
Predicted 5 Years Crashes 20 1.426 2.050 0.317 9.72 28.527   
Observed 2017 Crashes 20 10.400 15.922 0.000 66.00 208.000 6.966 
Predicted 2017 Crashes 20 1.493 2.188 0.334 10.38 29.861   
Observed 2016 Crashes 20 19.700 53.367 0.000 238.00 394.000 13.464 
Predicted 2016 Crashes 20 1.463 2.259 0.314 10.74 29.263   
Observed 2015 Crashes 20 13.500 26.836 0.000 114.00 270.000 9.495 
Predicted 2015 Crashes 20 1.422 1.934 0.308 9.09 28.437   
Observed 2014 Crashes 20 10.900 19.496 0.000 76.00 218.000 7.965 
Predicted 2014 Crashes 20 1.369 1.801 0.299 8.55 27.371   
Observed 2013 Crashes 20 8.750 13.018 0.000 49.00 175.000 6.236 
Predicted 2013 Crashes 20 1.403 2.170 0.268 10.16 28.064   

 
TABLE C.58: Calibration Factors Region 3 (Base + CMF Adj) – 4U USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 20 12.650 23.969 0.200 98.00 253.000 8.624 
Predicted 5 Years Crashes 20 1.467 2.015 0.319 9.60 29.338   
Observed 2017 Crashes 20 10.400 15.922 0.000 66.00 208.000 6.786 
Predicted 2017 Crashes 20 1.533 2.152 0.337 10.26 30.652   
Observed 2016 Crashes 20 19.700 53.367 0.000 238.00 394.000 13.101 
Predicted 2016 Crashes 20 1.504 2.220 0.316 10.61 30.073   
Observed 2015 Crashes 20 13.500 26.836 0.000 114.00 270.000 9.230 
Predicted 2015 Crashes 20 1.463 1.904 0.311 8.98 29.252   
Observed 2014 Crashes 20 10.900 19.496 0.000 76.00 218.000 7.732 
Predicted 2014 Crashes 20 1.410 1.770 0.302 8.45 28.195   
Observed 2013 Crashes 20 8.750 13.018 0.000 49.00 175.000 6.067 
Predicted 2013 Crashes 20 1.442 2.136 0.270 10.04 28.847   

 
TABLE C.59: Calibration Factors Region 4 (Base Case HSM) – 4U Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 30 8.907 15.567 0.000 69.20 267.200 7.067 
Predicted 5 Years Crashes 30 1.260 1.263 0.085 5.40 37.812   
Observed 2017 Crashes 30 9.367 18.403 0.000 85.00 281.000 7.405 
Predicted 2017 Crashes 30 1.265 1.295 0.085 5.60 37.945   
Observed 2016 Crashes 30 9.600 18.011 0.000 78.00 288.000 7.521 
Predicted 2016 Crashes 30 1.276 1.310 0.084 5.96 38.293   
Observed 2015 Crashes 30 9.100 15.196 0.000 67.00 273.000 7.162 
Predicted 2015 Crashes 30 1.271 1.286 0.090 5.55 38.116   
Observed 2014 Crashes 30 8.533 13.607 0.000 61.00 256.000 6.783 
Predicted 2014 Crashes 30 1.258 1.275 0.080 5.47 37.741   
Observed 2013 Crashes 30 7.933 13.547 0.000 55.00 238.000 6.213 
Predicted 2013 Crashes 30 1.277 1.281 0.080 5.44 38.309   
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TABLE C.60: Calibration Factors Region 4 (Base + CMF Adj) – 4U USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 30 8.907 15.567 0.000 69.20 267.200 6.656 
Predicted 5 Years Crashes 30 1.338 1.402 0.081 6.67 40.146   
Observed 2017 Crashes 30 9.367 18.403 0.000 85.00 281.000 6.961 
Predicted 2017 Crashes 30 1.346 1.443 0.081 6.91 40.370   
Observed 2016 Crashes 30 9.600 18.011 0.000 78.00 288.000 7.069 
Predicted 2016 Crashes 30 1.358 1.479 0.080 7.36 40.742   
Observed 2015 Crashes 30 9.100 15.196 0.000 67.00 273.000 6.754 
Predicted 2015 Crashes 30 1.347 1.418 0.086 6.59 40.420   
Observed 2014 Crashes 30 8.533 13.607 0.000 61.00 256.000 6.376 
Predicted 2014 Crashes 30 1.338 1.420 0.077 6.75 40.153   
Observed 2013 Crashes 30 7.933 13.547 0.000 55.00 238.000 5.857 
Predicted 2013 Crashes 30 1.355 1.419 0.077 6.71 40.637   
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Five-Lane Undivided (5T) Segments – Urban and Suburban Arterials 
 

TABLE C.61: Calibration Factors All Regions (Base Case HSM) – 5T USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 304 11.035 13.969 0.000 80.00 3354.600 3.584 
Predicted 5 Years Crashes 304 3.079 3.142 0.151 24.72 935.876   
Observed 2017 Crashes 304 11.072 14.618 0.000 100.00 3366.000 3.509 
Predicted 2017 Crashes 304 3.155 3.223 0.164 25.97 959.219   
Observed 2016 Crashes 304 11.010 14.651 0.000 90.00 3347.000 3.524 
Predicted 2016 Crashes 304 3.124 3.182 0.156 24.43 949.745   
Observed 2015 Crashes 304 11.280 14.582 0.000 83.00 3429.001 3.602 
Predicted 2015 Crashes 304 3.132 3.221 0.132 25.14 952.059   
Observed 2014 Crashes 304 10.938 14.071 0.000 77.00 3325.000 3.648 
Predicted 2014 Crashes 303 2.999 3.061 0.148 23.56 911.569   
Observed 2013 Crashes 304 10.875 14.485 0.000 74.00 3306.000 3.617 
Predicted 2013 Crashes 303 3.006 3.066 0.135 24.56 913.952   

 
TABLE C.62: Calibration Factors All Regions (Base + CMF Adj) – 5T USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 304 11.035 13.969 0.000 80.00 3354.600 3.543 
Predicted 5 Years Crashes 304 3.114 3.176 0.000 24.72 946.785   
Observed 2017 Crashes 304 11.072 14.618 0.000 100.00 3366.000 3.470 
Predicted 2017 Crashes 304 3.191 3.256 0.000 25.98 970.108   
Observed 2016 Crashes 304 11.010 14.651 0.000 90.00 3347.000 3.484 
Predicted 2016 Crashes 304 3.160 3.215 0.000 24.41 960.652   
Observed 2015 Crashes 304 11.280 14.582 0.000 83.00 3429.001 3.560 
Predicted 2015 Crashes 304 3.169 3.257 0.000 25.15 963.227   
Observed 2014 Crashes 304 10.938 14.071 0.000 77.00 3325.000 3.605 
Predicted 2014 Crashes 303 3.034 3.095 0.000 23.56 922.232   
Observed 2013 Crashes 304 10.875 14.485 0.000 74.00 3306.000 3.574 
Predicted 2013 Crashes 303 3.043 3.102 0.000 24.57 924.938   

 
TABLE C.63: Calibration Factors Region 1 (Base Case HSM) – 5T USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 87 8.614 10.573 0.000 52.80 749.400 2.744 
Predicted 5 Years Crashes 87 3.139 3.498 0.260 23.87 273.070   
Observed 2017 Crashes 87 8.149 10.229 0.000 61.00 709.000 2.517 
Predicted 2017 Crashes 87 3.238 3.627 0.261 24.47 281.711   
Observed 2016 Crashes 87 8.356 10.432 0.000 53.00 727.000 2.605 
Predicted 2016 Crashes 87 3.208 3.569 0.267 24.43 279.055   
Observed 2015 Crashes 87 8.908 11.558 0.000 63.00 775.000 2.800 
Predicted 2015 Crashes 87 3.182 3.574 0.266 25.01 276.812   
Observed 2014 Crashes 87 9.322 12.171 0.000 56.00 811.000 3.077 
Predicted 2014 Crashes 87 3.030 3.412 0.262 23.14 263.606   
Observed 2013 Crashes 87 8.333 11.254 0.000 74.00 725.000 2.742 
Predicted 2013 Crashes 87 3.039 3.331 0.231 22.31 264.379   
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TABLE C.64: Calibration Factors Region 1 (Base + CMF Adj) – 5T USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 87 8.614 10.573 0.000 52.80 749.400 2.730 
Predicted 5 Years Crashes 87 3.155 3.481 0.277 23.84 274.518   
Observed 2017 Crashes 87 8.149 10.229 0.000 61.00 709.000 2.504 
Predicted 2017 Crashes 87 3.254 3.608 0.271 24.45 283.135   
Observed 2016 Crashes 87 8.356 10.432 0.000 53.00 727.000 2.591 
Predicted 2016 Crashes 87 3.225 3.552 0.285 24.41 280.546   
Observed 2015 Crashes 87 8.908 11.558 0.000 63.00 775.000 2.785 
Predicted 2015 Crashes 87 3.198 3.558 0.283 24.98 278.259   
Observed 2014 Crashes 87 9.322 12.171 0.000 56.00 811.000 3.061 
Predicted 2014 Crashes 87 3.046 3.394 0.279 23.11 264.963   
Observed 2013 Crashes 87 8.333 11.254 0.000 74.00 725.000 2.727 
Predicted 2013 Crashes 87 3.056 3.318 0.247 22.29 265.904   

 
TABLE C.65: Calibration Factors Region 2 (Base Case HSM) – 5T USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 46 13.509 15.483 0.400 62.00 621.400 4.766 
Predicted 5 Years Crashes 46 2.835 2.064 0.606 8.21 130.395   
Observed 2017 Crashes 46 13.522 16.835 0.000 68.00 622.000 4.784 
Predicted 2017 Crashes 46 2.826 2.035 0.644 8.31 130.012   
Observed 2016 Crashes 46 13.087 14.192 1.000 51.00 602.000 4.608 
Predicted 2016 Crashes 46 2.840 2.023 0.604 7.97 130.654   
Observed 2015 Crashes 46 13.609 15.594 0.000 55.00 626.000 4.693 
Predicted 2015 Crashes 46 2.900 2.143 0.602 8.52 133.403   
Observed 2014 Crashes 46 13.130 16.245 0.000 68.00 604.000 4.697 
Predicted 2014 Crashes 46 2.795 2.065 0.584 8.20 128.587   
Observed 2013 Crashes 46 14.196 16.622 0.000 74.00 653.000 5.046 
Predicted 2013 Crashes 46 2.813 2.087 0.542 8.08 129.411   

 
 

TABLE C.66: Calibration Factors Region 2 (Base + CMF Adj) – 5T USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 46 13.509 15.483 0.400 62.00 621.400 4.708 
Predicted 5 Years Crashes 46 2.869 2.071 0.590 8.22 131.988   
Observed 2017 Crashes 46 13.522 16.835 0.000 68.00 622.000 4.730 
Predicted 2017 Crashes 46 2.859 2.037 0.617 8.32 131.496   
Observed 2016 Crashes 46 13.087 14.192 1.000 51.00 602.000 4.552 
Predicted 2016 Crashes 46 2.875 2.030 0.589 7.97 132.249   
Observed 2015 Crashes 46 13.609 15.594 0.000 55.00 626.000 4.636 
Predicted 2015 Crashes 46 2.936 2.150 0.587 8.53 135.037   
Observed 2014 Crashes 46 13.130 16.245 0.000 68.00 604.000 4.641 
Predicted 2014 Crashes 46 2.829 2.071 0.570 8.20 130.151   
Observed 2013 Crashes 46 14.196 16.622 0.000 74.00 653.000 4.981 
Predicted 2013 Crashes 46 2.850 2.100 0.519 8.08 131.102   
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TABLE C.67: Calibration Factors Region 3 (Base Case HSM) – 5T USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 119 12.627 15.725 0.000 80.00 1502.600 3.606 
Predicted 5 Years Crashes 119 3.502 3.544 0.151 24.72 416.743   
Observed 2017 Crashes 119 12.941 16.819 0.000 100.00 1540.000 3.609 
Predicted 2017 Crashes 119 3.586 3.624 0.169 25.97 426.746   
Observed 2016 Crashes 119 13.311 17.931 0.000 90.00 1583.999 3.728 
Predicted 2016 Crashes 119 3.571 3.583 0.167 24.35 424.946   
Observed 2015 Crashes 119 13.118 16.658 0.000 83.00 1561.000 3.685 
Predicted 2015 Crashes 119 3.559 3.628 0.132 25.14 423.578   
Observed 2014 Crashes 119 11.740 14.372 0.000 77.00 1397.001 3.429 
Predicted 2014 Crashes 118 3.423 3.449 0.148 23.56 407.373   
Observed 2013 Crashes 119 12.025 15.182 0.000 71.00 1431.000 3.502 
Predicted 2013 Crashes 118 3.434 3.500 0.139 24.56 408.659   

 
 

TABLE C.68: Calibration Factors Region 3 (Base + CMF Adj) – 5T USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 119 12.627 15.725 0.000 80.00 1502.600 3.551 
Predicted 5 Years Crashes 119 3.556 3.600 0.154 24.72 423.207   
Observed 2017 Crashes 119 12.941 16.819 0.000 100.00 1540.000 3.555 
Predicted 2017 Crashes 119 3.640 3.679 0.172 25.98 433.218   
Observed 2016 Crashes 119 13.311 17.931 0.000 90.00 1583.999 3.672 
Predicted 2016 Crashes 119 3.625 3.637 0.170 24.35 431.338   
Observed 2015 Crashes 119 13.118 16.658 0.000 83.00 1561.000 3.629 
Predicted 2015 Crashes 119 3.615 3.686 0.134 25.15 430.148   
Observed 2014 Crashes 119 11.740 14.372 0.000 77.00 1397.001 3.376 
Predicted 2014 Crashes 118 3.478 3.505 0.151 23.56 413.860   
Observed 2013 Crashes 119 12.025 15.182 0.000 71.00 1431.000 3.447 
Predicted 2013 Crashes 118 3.489 3.557 0.142 24.57 415.167   

 
TABLE C.69: Calibration Factors Region 4 (Base Case HSM) – 5T USUB Arterials 

Variable Obs Mean Std. Dev. Min Max Sum C (base) 
Average 5 Years Crashes 52 9.254 12.744 0.000 58.80 481.200 4.160 
Predicted 5 Years Crashes 52 2.224 1.995 0.154 9.06 115.669   
Observed 2017 Crashes 52 9.519 12.564 0.000 57.00 495.000 4.099 
Predicted 2017 Crashes 52 2.322 2.058 0.164 9.46 120.750   
Observed 2016 Crashes 52 8.346 11.606 0.000 54.00 434.000 3.771 
Predicted 2016 Crashes 52 2.213 1.993 0.156 9.32 115.090   
Observed 2015 Crashes 52 8.981 12.395 0.000 65.00 467.000 3.949 
Predicted 2015 Crashes 52 2.274 2.091 0.158 10.00 118.266   
Observed 2014 Crashes 52 9.865 14.291 0.000 68.00 513.000 4.563 
Predicted 2014 Crashes 52 2.162 1.911 0.153 8.69 112.427   
Observed 2013 Crashes 52 9.558 15.168 0.000 73.00 497.000 4.440 
Predicted 2013 Crashes 52 2.153 1.947 0.135 8.81 111.930   
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TABLE C.70: Calibration Factors Region 4 (Base + CMF Adj) – 5T USUB Arterials 
Variable Obs Mean Std. Dev. Min Max Sum C (adj) 
Average 5 Years Crashes 52 9.254 12.744 0.000 58.80 481.200 4.110 
Predicted 5 Years Crashes 52 2.251 2.112 0.000 9.75 117.072   
Observed 2017 Crashes 52 9.519 12.564 0.000 57.00 495.000 4.049 
Predicted 2017 Crashes 52 2.351 2.179 0.000 10.18 122.260   
Observed 2016 Crashes 52 8.346 11.606 0.000 54.00 434.000 3.725 
Predicted 2016 Crashes 52 2.241 2.112 0.000 10.02 116.520   
Observed 2015 Crashes 52 8.981 12.395 0.000 65.00 467.000 3.899 
Predicted 2015 Crashes 52 2.304 2.211 0.000 10.53 119.783   
Observed 2014 Crashes 52 9.865 14.291 0.000 68.00 513.000 4.512 
Predicted 2014 Crashes 52 2.187 2.021 0.000 9.18 113.703   
Observed 2013 Crashes 52 9.558 15.168 0.000 73.00 497.000 4.390 
Predicted 2013 Crashes 52 2.177 2.062 0.000 9.48 113.211   

 
TABLE C.71: Details of 3T Segments of Urban & Suburban Arterials with High Crash Rates 

BLM ELM County Route Special 
Case 

County 
Sequence 

18.97 19.23 PUTNAM SR024 0-NONE  1 
15.205 15.31 BRADLEY SR074 0-NONE  1 
13.99 14.17 RUTHERFORD SR096 0-NONE  1 
7.5 7.66 WILLIAMSON SR252 0-NONE  1 

 

Figure C.1: Location Details and Geometric Overview of a Sample 3T Segment of Urban & Suburban 
Arterials with High Crash Rates (On Route SR 074 in Bradley County) 
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TABLE C.72: Details of 4U Segments of Urban & Suburban Arterials with High Crash Rates 
BLM ELM County Route Special 

Case 
County 
Sequence 

11.11 11.22 PUTNAM SR135 0-NONE  1 
12.478 12.63 DAVIDSON SR024 0-NONE  1 
5.43 5.62 MONTGOMERY SR048 0-NONE  1 

 

 
Figure C.2: Location Details and Geometric Overview of a Sample 4U Segment of Urban & Suburban 

Arterials with High Crash Rates  
(On Route SR 024 in Davidson County: A Portion of Broadway St., Nashville, TN) 
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APPENDIX D: Introduction to AASHTOWare Safety 
Analyst User’s Manual 
An introduction to AASHTOWare Safety Analyst software is presented in this section. Note that the 
contents of Appendix D are directly from the AASHTOWare Safety Analyst User’s Manual. For more 
information, please refer to the User’s Manual. 

D.1. Introduction to Tutorial 
Safety Analyst is a set of computerized analytical tools to aid state and local highway agencies in highway 
safety management and to improve a highway agency's system-wide programming of site-specific safety 
improvements. Safety Analyst incorporates state-of-the-art safety management approaches for guiding 
the decision-making process to identify safety improvement needs and has a strong basis in cost-
effectiveness analysis. Safety Analyst will help highway agencies get the greatest possible safety benefit 
from each dollar spent in the name of safety. 
Safety Analyst addresses site-specific safety improvements that involve physical modifications to the 
highway system. Also, Safety Analyst has the capability to determine the frequency and percentage of 
particular crash types along specified portions of the highway system. These capabilities can be used to 
investigate the potential need for engineering improvements at a site. 
Safety Analyst has been developed to: 

● Address site-specific safety improvements that involve physical modifications to a highway system 
● Use state-of-the-art methodologies to advance the state-of-the-practice of highway safety 

management 
● Be comprehensive and include all stages of the safety management process 
● Be rigorous enough to have scientific merit, yet flexible enough to fit into diverse highway agency 

operating environments 
● Draw upon knowledge and experience from previous and ongoing safety initiatives 

A general safety management process can be described in six main steps: 
1: Identification of sites with potential for safety improvement 
2: Diagnosis of the nature of safety problems at specific sites 
3: Selection of countermeasures at specific sites 
4: Economic appraisal for sites and countermeasures under consideration 
5: Priority rankings of improvement projects 
6: Safety effectiveness evaluation of implemented countermeasures 

Safety Analyst comprises four modules that implement the six main steps for highway safety 
management: 

Module 1 - Network screening 
Module 2 - Diagnosis and countermeasure selection 
Module 3 - Economic appraisal and priority-ranking 
Module 4 - Countermeasure evaluation 
Module 5 - Systemic site selection evaluation 

Safety Analyst is packaged with default safety performance function, countermeasure, site diagnosis, and 
crash distribution data used by the analysis algorithms. Furthermore, Safety Analyst provides an 
Administration Tool that enables an agency to modify those default data or to provide its own values. 
Safety Analyst also provides a Data Management Tool to import an agency's highway inventory, traffic 
count, and crash data and to convert those data into a format usable by the Analytical Tool for conducting 
safety analyses. 
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Safety Analyst consists of a set of multiple independent tools that interact with a database using a two-
tier, client-server architecture. The database management system (DBMS) acts as the server, performing 
user authentication and data integrity functions for the deployed Safety Analyst tools. Figure D.1 
illustrates the relationships and flow of data between the Safety Analyst applications. 

 
Figure 36: Safety Analyst Architecture (Source: AASHTOWare Safety Analyst User’s Manual) 

 
Safety Analyst is implemented in the Java programming language and uses the Java Database Connectivity 
(JDBC) API to support connectivity to a wide variety of DBMS vendors. This interface supports connectivity 
to an embedded version of the JavaDB (a.k.a. Apache Derby) that allows Safety Analyst to operate as a 
desktop application, providing an alternative to a client-server deployment. 
The Safety Analyst toolset consists of three primary applications as follows: 

1. Administration (Admin) Tool - This tool is used to set up and manage the Safety Analyst 
deployment. It enables an agency to tailor the Safety Analyst data model and to modify the 
federally-supplied default data used in conducting safety analyses. 

2. Data Management Tool - This tool is used to import and prepare an agency's inventory, traffic 
volume, and crash data for analysis. (In the current release, a separate application is provided to 
manage the set of countermeasures that have been applied to an agency's inventory.) 

3. Analytical Tool - This tool is used to conduct safety analyses of an agency's inventory. To ensure 
data integrity, this client application accesses the agency data in a read-only mode. 

Administrators and data managers use the corresponding Safety Analyst Administration and Data 
Management tools to prepare Safety Analyst and the agency data for use by safety analysts. 
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Administrators install Safety Analyst and configuring system attributes, collision distributions, 
countermeasures, and diagnostic scenarios. Data Managers configure, import, post-process, and calibrate 
the agency's site data (segments, intersections, ramps, traffic, and crash data). Analysts use the Safety 
Analyst Analytical Tool to conduct safety analyses on an agency's inventory. 

D.1.1. Administration Tool 

The Safety Analyst Administration Tool Manual introduces administrators and data managers to the 
capabilities and features of the Safety Analyst Administration tool. It explains in detail the mechanics of 
using the software and accessing all of its functionality. It is the primary source of information concerning 
the operation of the Safety Analyst Administration tool. 
Getting started using the Safety Analyst system can be a difficult task. There are many roles and software 
tools to understand and use. The initial setup of the tools and the inventory data can be time-consuming. 
However, if the initial setup is done properly, future updates to the inventory data should be fairly quick. 

D.1.1.1. Using the Administration Tool 
The Safety Analyst Administration Tool should be used by administrators to create and maintain agency-
defined, non-inventory, data. These data include deployment attributes, countermeasures (CM), 
diagnostics, crash distributions, and Safety Performance Functions (SPF). These agency-defined data are 
available for use in the Safety Analyst Analytical Tool but can be modified only by Safety Analyst 
administrators. This section describes how to use the Administration Tool to create and maintain these 
agency-defined data. The Administration Tool operates with three separate and distinct databases: 

● Federal 
● Agency 
● System 

The Federal database is a read-only local (embedded) database that is distributed with the Administration 
Tool in the Administrative installation. It contains federal default values for the CM, diagnostics, and SPF 
data plus national averages for the crash distributions. This database is not edited by the Administration 
Tool and should not be modified by the agency because it may be overwritten by future updates to Safety 
Analyst. No connection information is required for the Federal database because it is a local database. 
 
The Agency database is a local or remote database that a user creates and maintains using the 
Administration Tool. It is the repository for the agency-specified deployment attributes, agency-specific 
countermeasures, agency-specific diagnostic scenarios, state-wide crash distribution averages, or 
modified federal defaults. Use the Agency database tab to specify the connection information for the 
database. 
 
The System database is a local or remote database that a user maintains using the Administration Tool. It 
contains the merged Federal and Agency data and is the source of that information for the Safety Analyst 
Analytical Tool. Analyst can view and edit these different data using the editing tools listed in the Edit pull-
down menu. The User must first create an Agency database to enable data editing tools. After editing the 
data, the user must merge the agency data with the Federal database using the System database tab's 
Update Database button. Once the System database has been created and populated (updated), the user 
can start the data management process using the Data Management Tool. 

D.1.1.2. Agency-Defined Safety Performance Functions (SPF) 
Safety Performance Functions (SPF) are regression models used to predict crashes for a site and are also 
used to perform Empirical Bayes calculations within the Safety Analyst analytical modules. For each site 
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subtype in Safety Analyst, default or agency-defined, there must be two associated SPF: one for Total 
Crashes and one for Fatal and All-Injury Crashes. In Safety Analyst, an SPF must have a multiplicative, 
exponential form consisting of one or more terms of the following forms: 

● C - constant term 
● ec - exponential term with a constant exponent 
● ecV - exponential term with a variable exponent 
● Vc - variable power term 
● L - site length (roadway segments and ramps) 

In these forms, c indicates a regression coefficient and V represents the value of a numeric site variable 
(e.g., Annual Average Daily Traffic). 
Note: Safety Analyst does not accommodate additive SPF forms, like those obtained from ordinary least 
squares regression, because those are not considered appropriate for use with non-normal data like 
crash data. 

D.1.1.2.1. Built-In Safety Performance Functions 
Built-in SPFs have been developed for each of the default site subtypes associated with the site types 
supported by Safety Analyst (Roadway Segments, Intersections, and Ramps). The general functional forms 
of these default SPF are as follows: 

Roadway segments and Ramps: κy = SPF(AADT) = Cy × PCT × eα × AADTy
β

1                                     (D.1) 

where: 
κy = predicted number of crashes at a site during year y (expressed on a per-mile basis for 
roadway segments and a per-site basis for intersections and ramps) 
AADT = annual average daily traffic (vehicles/day) 
Cy = yearly calibration factor 
PCT = proportion of a specified collision type 
α, β1= log-scale regression coefficients 

D.1.1.2.2. SPF Editor Dialog 
Figure D.2 illustrates the primary interface for agency-management of Safety Performance Functions (SPF) 
within Safety Analyst. An agency may choose to use the built-in (default) SPF provided with Safety Analyst 
or may choose to modify (or replace) the SPF for one or more of the subtypes supported by the Safety 
Analyst. When the user defines a new subtype for use in Safety Analyst, the user must select an existing 
subtype from which to copy the SPF for the new subtype. The user can then modify (or replace) the SPF 
for the subtype using this interface. 
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Figure 37: SPF Editor in AASHTOWare Safety Analyst Software 

D.1.1.2.3. Edit Agency SPF Table 
This table provides access to the Safety Performance Functions (SPF) for all site subtypes. For each site 
subtype in Safety Analyst, default, or agency-defined, there must be two associated SPF: one for Total 
Crashes and one for Fatal and All-Injury Crashes. Thus, the SPF editor table includes two rows for every 
subtype defined in Safety Analyst. 
To modify an existing SPF, select the desired SPF (click on the desired row in the table) then press the Edit 
SPF button. Alternatively, double click on the desired row to invoke the editor for the selected SPF. From 
the editor dialog, the terms of the SPF can be modified or removed, and new terms can be specified. 
To restore a modified SPF to its default (built-in) SPF provided with Safety Analyst, select the desired SPF 
(click on the desired row in the table) and then press the Restore Default button. Note: SPF that the 
agency has specified for agency-defined site subtypes cannot be restored. 

● Table Column Items 
○ Site Subtype ID - Identifier for the site subtype, which indicates the facility classification 

of the site (see help for the Site Subtype column). The data type associated with this item 
is enumerated. Enumeration values are created dynamically at run time. 

○ Site Subtype - Site subtype indicates the facility classification of a site. 
Safety Analyst provides all the required functionality to support the following: 

■ 17 subtypes (i.e., classes) of roadway segments. Site subtypes for roadway 
segments are determined based upon inventory data elements such as area type, 
number of lanes, median type, access control, one-way vs. two-way operation, 
and interchange influence. 

■ 12 subtypes of intersections. Site subtypes for intersections are determined 
based upon inventory data elements such as area type, type of traffic control, and 
the number of legs. 

■ 16 subtypes of ramps. Site subtypes for ramps are determined based upon 
inventory data elements such as area type and ramp configuration. 
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For each site subtype, safety performance functions (SPFs) are available to predict total 
(TOT) and fatal and injury (FI) crash frequencies. 
Note: Agencies can also define their own subtypes for segments, intersections, and 
ramps, but will also need to provide the SPFs to support those subtypes. The data type 
associated with this item is enumerated. Enumeration values are created dynamically at 
run time. 

○ Crash Severity Level - The crash severity level associated with the SPF. The data type 
associated with this item is enumerated. Enumeration values: 

■ Total Crashes - All crashes. 
■ Fatal and All Injury Crashes - Fatal and all injury crashes. 

○ Status - An indicator of the current state of the SPF. The data type associated with this 
item is enumerated. Enumeration values: 

■ Agency - Agency-specified SPF. 
■ Default - Federally-specified (default) SPF. 
■ Modified - Modified federal SPF. 

● Table Buttons 
○ SPF Overview button - (Keyboard shortcut: Alt-S) Press this button to display an overview 

of Safety Performance Functions (SPF) as used in Safety Analyst. 
○ Edit SPF button - (Keyboard shortcut: Alt-E) Press this button to display a dialog for editing 

the specification of the selected SPF. 
○ Restore Default button - (Keyboard shortcut: Alt-R) Press this button to restore the 

selected SPF to the default (built-in) SPF provided with Safety Analyst. Note: SPF that the 
agency has specified for agency-defined site subtypes cannot be restored. 

○ Help button - (Keyboard shortcut: Alt-H) Press this button to display a dialog that 
describes the table and its associated columns. 

D.1.1.2.. Edit SPF Dialog 
Figure D.3 illustrates the dialog used for modifying an individual Safety Performance Function (SPF). The 
labels on the top left of the Edit dialog panel indicate the site subtype and the crash severity level to which 
the SPF applies. The top right of the Edit dialog panel presents a field for specifying the over-dispersion 
parameter for the SPF. Below the SPF identification labels and the over-dispersion parameter field, is a 
text area that displays the SPF equation, including the numeric regression coefficients. Each term in the 
equation is subscripted with the term number for reference to the term table. As terms are added, 
removed, or modified in the term table, the SPF display area updates to reflect the changes. 
The button to the right of the SPF display is used to copy the SPF from another site subtype/crash severity 
level. Press the button to display a Copy dialog with a drop-list that enables users to select the SPF 
specification from another subtype to copy. When users press the Ok button on the Copy dialog, the 
contents of the SPF Edit dialog update to match the selected SPF. Below the SPF display area is the table 
of terms that define the SPF. Each row in the table represents one term of the SPF. Users can add and 
remove terms via the buttons on the right side of the table. Users can edit the cells in each row to specify 
the functional form of the term, and the regression coefficients and site variables if required by the 
selected functional form. Press the Ok button to save changes. The editor will validate all terms for missing 
coefficients and variable specifications. It will also check for duplicate terms. If there are missing items or 
duplicates, the editor will issue an error and will not close. The editor will also check for the same site 
variable used in multiple terms. The editor does not consider this as an error, but if it occurs, the editor 
will issue a warning and request the user’s confirmation. 
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Figure 38: Illustration of SPF Editor in the AASHTOWare Safety Analyst Software 

 
Edit SPF 

● Site Subtype - Identifies the site subtype, to which the SPF being edited applies. The data type 
associated with this item is enumerated. Enumeration values are created dynamically at run time. 

● Crash Severity Level - Identifies the crash severity level, to which the SPF being edited applies. 
The data type associated with this item is enumerated. Enumeration values: 

○ Total Crashes - All crashes. 
○ Fatal and All Injury Crashes - Fatal and all injury crashes. 

● Overdispersion Parameter - Overdispersion Parameter (d): Indicates the extent to which the 
mean crash frequency is exceeded by the variance of crash frequency. The overdispersion 
parameter is expressed as a constant for all site types. The data type associated with this item is 
numeric. 

● SPF - This window displays the SPF equation with the currently specified terms. The numeric 
subscript on each term indicates the term number. 

Copy SPF button - (Keyboard shortcut: Alt-C) Press this button to display a dialog for copying an SPF from 
another subtype/severity level into this subtype/severity level. 
Edit SPF Terms Table 
This table presents a row for each term of the SPF, with columns that identify the term and its functional 
form, and columns that specify the regression coefficient and site variable associated with the term. 
To edit a term, double click the cell that contains the data item that users want to specify or change. For 
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enumerated items (e.g., Functional Form or Site Variable) select a value from the drop list. For the 
regression coefficient, type in the value. 
To add a term, press the Add Term button to the right of the table. A new row will appear in the table 
with default values in the cells of the row. Edit the values in the cells as desired. 
To remove a term, select a row in the table and then press the Remove Term button to the right of the 
table. 
Note: As users edit, add or remove terms, the equation display box above the table will update to reflect 
the current term specifications. 

● Table Column Items 
○ Term - Identifies the term of the SPF equation. This item is assigned and managed 

internally by Safety Analyst. The data type associated with this item is an integer. 
○ Functional Form - This item is the functional form of the SPF term. 

Double click a cell to display a drop list from which users can select the functional form of 
the term. The data type associated with this item is enumerated. Enumeration values: 

■ C - Constant term. 
■ ec - Exponential term with constant exponent. 
■ ecV - Exponential term with site-variable exponent. 
■ Vc - Power term. 

○ C - This item is the regression coefficient associated with the SPF term. 
Double click a cell to edit the regression coefficient in the term. The data type associated 
with this item is numeric. The default value for this item is 1.00. 

○ V - This item is the site variable (site characteristic) associated with the SPF term. The 
variables that appear in the selection list are specific to the type of the site (roadway 
segment, intersection, or ramp) to which SPF applies. 
Double click a cell to display a drop list from which users can select the site variable for 
the term. The data type associated with this item is enumerated. Enumeration values are 
created dynamically at run time. 

D.1.1.3. Agency-Defined Countermeasures 
Safety Analyst comes pre-configured with a set of common countermeasures that are used to reduce 
crashes. These countermeasures are referred to as the Federal default values. The countermeasures that 
are delivered with Safety Analyst may not exactly describe the countermeasures in use at the different 
agencies where Safety Analyst is being deployed. The edit dialog enables the Safety Analyst administrator 
to create and/or modify the countermeasure data associated with this deployment of Safety Analyst. 
Within Safety Analyst, a countermeasure includes the numerical parameters needed for the economic 
appraisal of single-site type, i.e., a roadway segment, intersection or ramp. The numerical parameters 
include sets of crash modification factors (CMFs), service life, and cost factors. Each set is associated with 
a specified site subtype. 
 
Using this interface, the Safety Analyst Administrator can maintain the set of agency-defined 
countermeasures for use by all agency analysts. To manage the set or modify individual agency-defined 
countermeasures, select the Edit|Countermeasures... menu item, or Edit the agency-defined 
countermeasures toolbar button. This invokes the Edit Agency Countermeasures dialog. 
NOTE: Modifications to the agency-defined countermeasures will be available to the Analytical tool after 
the System database has been updated. 
When finished, press the dialog's Save button to save the countermeasures to the Agency database. If the 
Discard button is pressed, any changes to the list or to individual countermeasures will be discarded. 
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D.1.1.3.1. New Countermeasure Dialog 

 
Figure 39: Illustration for Adding New Countermeasure: AASHTOWare Safety Analyst Software 

 
● CM Identifier - This item is a unique identifier associated with the countermeasure. For the federal 

default countermeasures, the identifier is generated by the system and is not prefixed. For 
agency-defined countermeasures, the identifier is generated by the system and prefixed with an 
'a'. The data type associated with this item is a string. The maximum number of characters for this 
item is 10. 

● Category - This item is used to group countermeasures to aid in searching and sorting. The data 
type associated with this item is enumerated. Enumeration values: 

○ None - No category. 
○ Access Management - Access Management. 
○ Bicycle - Bicycle. 
○ Drainage - Drainage. 
○ Education - Education. 
○ Enforcement - Enforcement. 
○ Geometry - Geometry. 
○ Lighting - Lighting. 
○ Other - Other. 
○ Pavement - Pavement. 
○ Pavement Markings - Pavement Markings. 
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○ Pedestrian - Pedestrian. 
○ Railroad - Railroad. 
○ Roadside - Roadside. 
○ Roadway - Roadway. 
○ Rumble Strips - Rumble Strips. 
○ School - School. 
○ Sight Distance - Sight Distance. 
○ Signals - Signals. 
○ Signing - Signing. 
○ Vegetation - Vegetation. 

● Title - This item is a short description of the countermeasure. The maximum number of characters 
for this item is 256. 

● Description - This item is a detailed description of the countermeasure. The maximum number of 
characters for this item is 2048. 

● Site Type - This item represents the site type (roadway segment, intersection, or ramp) associated 
with the countermeasure. 
Note: Once a countermeasure has been created, its site type cannot be changed. The data type 
associated with this item is enumerated. Enumeration values: 

○ Segment - Single roadway segment. 
○ Ramp - Ramp. 
○ Intersection - Intersection. 

● Crash Attribute - This item is the specification of the primary crash attribute affected by the 
implementation of this countermeasure. 
Note: Once a countermeasure has been created, its related crash attribute cannot be changed. 
The data type associated with this item is enumerated. Enumeration values are created 
dynamically at run time. 

● Engineering CM - If checked this countermeasure is used for engineering purposes. Non-
engineering countermeasures include, for example, training or public education. The data type 
associated with this item is boolean. The default value for this item is true. 

● Causes Subtype Change - Checking this box indicates that this countermeasure has the potential 
to affect a site subtype change at any site at which the countermeasure is implemented. 
There are some situations where the implementation of this countermeasure may not affect a 
subtype change, depending on the existing subtype of the site at which the countermeasure is 
implemented. For example, a countermeasure that installs actuated control at an intersection 
with an existing subtype that indicates no control or sign control will change the subtype. 
However, the subtype will not change if the intersection has a pre-timed control system because 
the Safety Analyst subtypes do not distinguish between actuated and pre-timed control. The data 
type associated with this item is boolean. The default value for this item is false. 

● Considered Major Reconstruction - Checking this box indicates that this countermeasure is 
considered a major reconstruction at any site at which the countermeasure is implemented. 
Note: Any countermeasure that effects a change in subtype at a site is, by default, considered a 
major reconstruction. The data type associated with this item is boolean. The default value for 
this item is false. 

D.1.1.3.2. Default Site Subtype Values 
The Default Site Subtype Values section enables the administrator to designate values that will be used 
as defaults when the program automatically creates each associated site-subtype countermeasure as the 
Define New Countermeasure dialog is closing. These values can be modified for individual site-subtype 
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countermeasures by using the Edit Countermeasure dialog that is shown when the Ok button is pushed 
on the Define New Countermeasure dialog. The site-subtype countermeasures for the selected 
countermeasure can also be edited by using the Edit button on the table of countermeasures after the 
initial creation of the countermeasure. 
These data are used in the Analytical Tool's Economic Appraisal and Priority Ranking analysis module. 
During the analysis setup in the Analytical Tool, most of these values can be further modified when applied 
to a specific site. 

● CMF (TOT) - The crash modification factor (CMF) for all or total crashes. A value of 1 implies no 
improvement. A value of less than 1 implies that if this countermeasure is implemented at sites 
with similar characteristics, the anticipated number of crashes would be less than it would be if 
this countermeasure is not implemented. For example, a value of 0.95 would imply that a five 
percent reduction in crashes is expected by implementing this countermeasure. Conversely, a 
value greater than 1 implies an increase in crashes is expected by implementing this 
countermeasure. The CMF values sometimes differ due to the characteristics of the site. When 
this occurs for a countermeasure, CMFs will be calculated as functions of the site characteristics 
at a given site using the CMF function. The data type associated with this item is numeric. The 
value of this item must be greater than 0.00000. 

● Site Subtype Factor (TOT) - The site subtype factor for all or total crashes. The CMF values 
sometimes differ due to characteristics of the site subtype where it is applied. The CMF value is 
multiplied by this factor to get a resultant CMF. A value of 1 or blank implies no change to the 
CMF value. The data type associated with this item is numeric. The value of this item must be 
greater than 0.00. 

● CMF (FI) - The crash modification factor (CMF) for fatal and all injury crashes. A value of 1 implies 
no improvement. A value of less than 1 implies that if this countermeasure is implemented at sites 
with similar characteristics, the anticipated number of crashes would be less than it would be if 
this countermeasure is not implemented. For example, a value of 0.95 would imply that a five 
percent reduction in crashes is expected by implementing this countermeasure. Conversely, a 
value greater than 1 implies an increase in crashes is expected by implementing this 
countermeasure. The CMF values sometimes differ due to the characteristics of the site. When 
this occurs for a countermeasure, CMFs will be calculated as functions of the site characteristics 
at a given site using the CMF function. The data type associated with this item is numeric. The 
value of this item must be greater than 0.00000. 

● Site Subtype Factor (FI) - The site subtype factor for fatal and all injury crashes. The CMF values 
sometimes differ due to characteristics of the site subtype where it is applied. The CMF value is 
multiplied by this factor to get a resultant CMF. A value of 1 or blank implies no change to the 
CMF value. The data type associated with this item is numeric. The value of this item must be 
greater than 0.00. 

● CMF Function - The crash modification function used to calculate the CMF. The CMF values 
sometimes differ due to the characteristics of the site. When this occurs for a countermeasure 
CMFs will be calculated as functions of the site characteristics at a given site. For example, 
implementing a countermeasure where the shoulders are widened has a different crash 
modification factor depending on the existing shoulder width and the proposed shoulder width. 
Constructing a ten-foot shoulder where there was none would have a significant reduction in 
crashes compared to widening the shoulder from nine feet to ten feet. In the Analytical Tool, 
when proposing a countermeasure that uses a CMF function, user input, or verification of 
variables specific to the function will be required. Refer to the Analytical Tool's manual for further 
explanation of the different functions. The data type associated with this item is enumerated. 
Enumeration values: 
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○ None - No CMF function. 
○ Add Two Way Left Turn Lane - Add Two Way Left Turn Lane. 
○ Widen Lanes - Widen Lanes. 
○ Widen Shoulders - Widen Shoulders. 
○ Change Shoulder Type - Change Shoulder Type. 
○ Flatten Horizontal Curve - Flatten Horizontal Curve. 
○ Improve Curve Super-elevation - Improve Curve Super-elevation. 
○ Install Raised Medians At Marked Crosswalks - Install Raised Medians At Marked 

Crosswalks. 
○ Install Raised Medians At Unmarked Crosswalks - Install Raised Medians At Unmarked 

Crosswalks. 
○ Generic Intersection - Generic Intersection. 
○ Install Turn Lane - Install Turn Lane. 

● Service Life - The service life is the number of years safety is improved when this countermeasure 
is implemented. Only when this value is non-zero will the countermeasure be active for the site 
subtype. For some analyses, multiple countermeasures may be implemented at a site. In this case, 
the service life for the multiple countermeasures implemented will be the maximum of each 
individual countermeasure service life. The data type associated with this item is an integer. The 
unit of measure associated with this item is years. The value of this item must be greater than or 
equal to 1 yr. The default value for this item is 1 yr. 

● Unit Construction Cost - The construction cost for a countermeasure is determined in a manner 
similar to CMFs. Sometimes it will appear as a single value, and sometimes it will need to be 
calculated with a Cost Function based upon site characteristics. The data type associated with this 
item is numeric. The value of this item must be greater than 0.00. The default value for this item 
is 0.00. 

● Construction Cost Units - This item represents the units in which the cost to implement the 
countermeasure is expressed. These units are used in the generation of reports. The data type 
associated with this item is enumerated. Enumeration values: 

○ CL mi - per centerline mile. 
○ INT LG - per intersection leg. 
○ LN mi - per lane mile. 
○ site - per site. 
○ sq ft - per square foot. 
○ TL - per turn lane. 

● Construction Cost Function - The construction cost for a countermeasure is determined in a 
manner similar to CMFs. Sometimes it will appear as a single value, and sometimes it will need to 
be calculated with a function based upon site characteristics. For example, implementing a 
countermeasure where the shoulders are widened has a different cost depending on the existing 
shoulder width and the proposed shoulder width. Constructing a ten-foot shoulder where there 
was none would be costlier than widening the shoulder from nine feet to ten feet. In the Analytical 
Tool, when proposing a countermeasure that uses a cost function, user input, or verification of 
variables specific to the function will be required. Refer to the Analytical Tool's manual for further 
explanation of the different functions. The data type associated with this item is enumerated. 
Enumeration values: 

○ None - No cost function. 
○ Cost Per Site - Cost Per Site. 
○ Cost Per Centerline Mile of Roadway - Cost Per Centerline Mile of Roadway. 
○ Cost Per Lane Mile of Traveled Way - Cost Per Lane Mile of Traveled Way. 
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○ Cost Per Square Foot of Traveled Way - Cost Per Square Foot of Traveled Way. 
○ Cost Per Square Foot of Shoulder - Cost Per Square Foot of Shoulder. 
○ Cost Per Square Foot of Lane Widening - Cost Per Square Foot of Lane Widening. 
○ Cost Per Square Foot of Shoulder Widening - Cost Per Square Foot of Shoulder Widening. 
○ Cost Per Added Turn Lane - Cost Per Added Turn Lane. 
○ Cost Per Intersection Approach - Cost Per Intersection Approach. 

D.1.2. Data Management 

The analytical procedures in the five Safety Analyst modules utilize several types of data. The databases 
containing these data are created and maintained using Safety Analyst applications. It is envisioned that 
most highway agencies will import data into the Safety Analyst databases from existing agency data 
sources (files and/or databases). The Safety Analyst Data Management Tool is used to import specific data 
items from highway agency sources and code them to a common Safety Analyst format. 
This section summarized the different types of data used and maintained within the Safety Analyst 
databases. The data within the Safety Analyst can be categorized as follows: 

● Agency Data 
● Site Characteristics 

○ Roadway segments 
○ Intersections 
○ Ramps 

● Crashes 
● Implemented countermeasures 
● Data Maintained for Computational Purposes 
● Safety performance functions (SPFs) 
● Crash proportions 
● Countermeasure defaults 
● Crash Costs 
● EPDO weights 
● Beta distribution parameters 
● Other defaults 

The agency data represent data that will likely be imported into Safety Analyst from existing agency data 
sources. The data maintained for computational purposes represents data that are either provided as 
default values within the Safety Analyst program or are calculated during the data import process. 

D.1.2.1. Agency Data 
It is anticipated that highway inventory data, crash data, and possibly data related to implemented 
countermeasures will be imported into Safety Analyst from existing agency data sources. These data 
pertain to individual sites within an agency's highway network. Location identification information links 
the respective data to a particular site on the highway network. A site refers to a single roadway segment, 
intersection, or ramp within the highway network. 
Within Safety Analyst the inventory data, referred to as site characteristic data, are divided into three 
facility types, or site types that make up the entire roadway network: 

● Roadway segments 
● Intersections 
● Ramps 

The site characteristic data contain inventory data unique to the respective site type. 
Location identifier data are used to describe the exact location of a site within the highway network. 
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Highway agencies have adopted different location identifier systems for their inventory highway data and 
other data files. Four basic systems of location identifier information are used by most highway agencies. 
These basic location identifier systems include: 

● Route/county/milepost 
● Route/milepost 
● Route/segment identifier/distance 
● Segment identifier/distance 

Safety Analyst can accommodate data that utilize any one of these systems to link the respective data to 
a particular location within the highway network. The location identifier systems are used to link the other 
site-specific data (i.e., crash data and implemented countermeasure data) to a given site. 
The other data maintained in the Safety Analyst databases are used for computational purposes when 
analyzing a site. For the most part, these other data (i.e., safety performance functions (SPFs), crash 
proportions, countermeasure defaults, crash costs, EPDO weights, beta distribution parameters, and 
other defaults) do not pertain to individual sites, but rather the data elements pertain to a collection of 
sites or to all sites. 

D.1.2.2. Site Characteristics Data 
The Safety Analyst inventory database is composed of records, likely imported from an agency's existing 
inventory files, pertaining to three types of sites: roadway segments, intersections, and ramps. For each 
individual site, the record contains geometric, traffic control, and traffic volume data and location 
identifier data to link these site characteristics to a location on the highway system. The individual site 
characteristic data elements are classified as either mandatory (i.e., required) or optional variables. 

D.1.2.3. Crash Data 
The Safety Analyst database includes data elements that characterize the type of crash and data to link 
the crash to a specific location on the highway system (i.e., the location identifier variables). The crash 
data elements included in the Safety Analyst database can be broadly categorized as crash-level, vehicle-
level, or person-level data elements. 

D.1.2.4. Implemented Countermeasures 
The Safety Analyst database contains data pertaining to the construction or improvement history of sites. 
These implemented countermeasure data elements are used primarily during the execution of a module 
analysis. Specifically, the data elements are used to determine the available crash history at a site. If an 
analyst elects to limit the analysis period by excluding years prior to major reconstruction, the flag for 
major reconstruction data element serves as an indicator for the program to limit the analysis period as 
so indicated. By including periods prior to major reconstruction in an analysis, there is the potential for 
miscalculating the expected crash history at a site and/or the safety effectiveness of a countermeasure. 
This potential exists because Safety Analyst may not account for the differences in the site characteristics 
between the current conditions and those prior to reconstruction. As indicated already, the site 
characteristic data elements describe the current status of the geometric design features of a site. For 
Module 4, the implemented countermeasure data are used to determine sites for inclusion in a 
countermeasure effectiveness evaluation. 

D.1.2.5. Safety Performance Functions (SPFs) 
SPFs are regression models used to predict crashes for a site on an agency's highway system. Each Safety 
Analyst module utilizes SPFs in its processing procedures to perform the Empirical Bayes calculations. The 
Safety Analyst system database contains values of parameters (default) that describe these functions. 
Equation D.2 shows the general functional forms of the SPFs for roadway segments used in the Safety 
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Analyst. 
 

𝐾𝐾 = 𝑒𝑒⍺ ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝛽𝛽1 ∗ 𝑆𝑆𝐿𝐿 
 

(D.2) 

where K denotes crash frequency per mile per year; ADT denotes average daily traffic (vehs/day); α is the 
intercept; β1 is coefficient of ADT; SL is segment length (mi). 
Table D.1 presents the default values of SPF for roadway segments for total crashes. 
 
 
 

Table D.1: SPFs for Roadway Segment (Total Crashes) 

Site Subtype 
Description 

State Regression 
Coefficients Log 
Intercept (α) 

Regression 
Coefficients Log 
AADT (β1) 

Overdispersion 
Parameter (d) 

Rural multilane 
divided highway 
segments 

OH -4.60 0.64 0.28 

Urban multilane 
divided arterial 
segments 

OH -11.85 1.34 5.91 

 
The SPFs developed for use in Safety Analyst are valid only for application to the states and time periods 
for which they were developed. However, Safety Analyst includes a calibration procedure that allows SPFs 
developed for one particular state and one particular time period to be applied to other states and time 
periods. When SPFs provided with Safety Analyst are subsequently calibrated for application to a different 
state and time period using a state’s own crash data, useful safety predictions are obtained. 

D.1.2.6. Crash Proportions and Rates 
Crash proportion data are maintained in the Safety Analyst database for different crash data elements 
and severity levels. Crash proportions are used during analyses of particular collision types, in procedures 
to calculate weighted crash costs for fatal-and-injury crashes, to calculate equivalent property-damage-
only (EPDO) crashes in Modules 1 and 3, and to perform analyses based on fatal and severe (FS) injuries. 
Crash proportions are also used when generating crash summary statistics. Default values of crash 
proportions are provided in the Safety Analyst database. 

D.1.2.7. Countermeasure Defaults 
The Safety Analyst database contains default data related to countermeasures, or construction 
improvements, that can be made to a site to potentially improve the site's safety performance. The 
countermeasure default data maintained within the Safety Analyst database is primarily used during 
diagnosis and countermeasure selection procedures and during the economic appraisal and priority 
ranking procedures. The list of default countermeasures is the complete list of countermeasures that an 
Analyst can select from during the countermeasure selection procedures within Module 2 and during 
economic analyses within Module 3. 
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D.1.2.7.1. Crash Modification Factor (CMF) 
A CMF function is necessary when the incremental effect on safety for a countermeasure varies due to 
site characteristics at a given site. Since CMF functions vary by certain site characteristics, some site 
characteristic data may be utilized in calculating a CMF. If a value needed to determine a CMF is not 
available in the Safety Analyst database, Safety Analyst provides a dialog box for data entry of these 
values. 

D.1.3. Analytical Tool 

As mentioned, the Analytical Tool has 5 modules which are described below. 

D.1.3.1. Overview of Module 1 - Network Screening 
The basic purpose of the network screening module is to review the entire roadway network, or portions 
of the roadway network, under the jurisdiction of a highway agency and identify and prioritize those sites 
that have promise as sites for potential safety improvements and; therefore, merit further investigation 
(i.e., sites to which the other Safety Analyst modules should be applied). The network screening process 
makes use of information on roadway characteristics and safety performance to identify those sites that 
are the strongest candidates for further investigation. The data used in the network screening process fall 
under the following categories: 

● Geometric design features 
● Traffic control features 
● Traffic volumes 
● Crash history 
● Crash characteristics 
● Safety performance functions (SPFs) 

In Module 1 the analyst first identifies a set of sites to be included in the screening. This set of sites may 
include all roadway segments, intersections, and ramps under the jurisdiction of an agency or may include 
a subset of the network. Analysts have various ways of identifying sites to be included in the screening. 
Once an analyst has settled upon a site list for which screening is to be performed, the analyst specifies 
the type of screening to be conducted. The analyst can select from among the following types of screening 
to perform: 

● Basic network screening (with Peak Searching on roadway segments and Coefficient of Variation 
(CV) Test) 

● Basic network screening (with Sliding Window on roadway segments) 
● Screening for a high proportion of specific crash type 
● A sudden increase in mean crash frequency 
● A steady increase in mean crash frequency 
● Corridor screening 

The first five types of screening listed above are conducted on a site-by-site basis, while corridor screening 
performs an analysis across a group of sites, and the group of sites is treated as a single unit or entity. 
Corridors may include all site types (i.e., roadway segments, intersections, and ramps). The final output 
from Module 1 is a report which identifies a list of sites (or corridors) that are the strongest candidates 
for further investigation within Safety Analyst. The list will vary depending on the type of screening 
conducted. 

D.1.3.2. Overview of Module 2 - Diagnosis and Countermeasure Selection 
The purpose of Module 2 - Diagnosis and Countermeasure Selection is to guide the analyst in the diagnosis 
of safety problems and the selection of a possible array of countermeasures for a specific site. This module 
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combines the second and third steps of the safety management process into one module. A site evaluated 
with the diagnosis and countermeasure selection module may have been selected by the network 
screening module or may have been selected by the analyst on some other basis. 
To diagnose the nature of safety problems at a specific site, this module provides the capability to: 

● Generate collision diagrams 
● Generate crash summary statistics 
● Conduct statistical tests on crash frequencies and/or proportions 

Through the use of an expert system, this module guides the analyst through appropriate office and field 
investigations to identify particular safety concerns at a site. The end result of this diagnosis process is a 
list of recommended countermeasures that, if implemented at the site, could serve to mitigate particular 
collision patterns. The decision as to which countermeasure(s) will actually be considered for further 
economic analysis is made by the Safety Analyst user as part of countermeasure selection. 

D.1.3.3. Overview of Module 3 - Economic Appraisal and Priority Ranking 
The purpose of the economic appraisal and priority ranking module is to provide the analyst with a means 
to conduct an economic appraisal of implementing a countermeasure or combination of countermeasures 
at a site and for the programming of the implementation of safety countermeasures across a network. 
The extent of the economic appraisal performed is dependent upon the needs of the analyst. Several 
different scenarios exist for how an analyst might utilize Module 3. For example, for a particular roadway 
segment, intersection, or ramp, an analyst might have already selected a countermeasure, either based 
upon output from Module 2 or through personal experience/knowledge, for which the analyst would like 
to know the safety benefits in terms of the expected number of crashes to be reduced and in economic 
terms. In this situation, Module 3 can be used to perform an economic appraisal for that particular 
countermeasure at that specific site, based upon economic criterion selected by the analyst. In another 
scenario, an analyst might have selected several countermeasures or combinations of countermeasures 
for possible implementation at a specific site. The analyst is able to use Module 3 to evaluate the cost-
effectiveness of each countermeasure and combination of countermeasures, based upon economic 
criterion selected by the analyst, to determine which countermeasure(s) should receive top priority. In a 
final scenario, an analyst might have selected candidate countermeasures (or combinations of 
countermeasures) at multiple sites throughout the highway network and would like to know which 
countermeasures should be implemented at which sites to maximize the net benefits, given budgetary 
constraints. Module 3 can perform this type of analysis through an optimization program. 
 
The economic appraisal functionality within Module 3 provides a means for estimating the safety 
effectiveness of countermeasures at a specific site within the highway network, expressing this 
effectiveness estimate in economic terms. The priority ranking functionality within Module 3 provides the 
means to rank which countermeasure(s) should be implemented at a specific site using the safety 
effectiveness estimates and provide recommendations on which countermeasures should be 
implemented across numerous sites given certain budget constraints. 

D.1.3.4. Overview of Module 4 - Countermeasure Evaluation 
The purpose of the countermeasure evaluation module is to estimate the safety effect of 
countermeasures implemented at specific sites. The module is capable of assessing the safety-
effectiveness of a single countermeasure at specific sites or the collective effectiveness of a group of 
countermeasures in which the same countermeasures were implemented at a specified list of sites. In 
most cases, the effectiveness measures are expressed as a percentage change (decrease or increase) in 
crash frequencies or specific target crash types. In other cases, the change of interest might be a shift in 
the proportion of specific collision types. 
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The effectiveness of countermeasures is determined through before-after evaluations performed using 
appropriate statistical techniques. The primary statistical approach to perform the before-after evaluation 
is the Empirical Bayes (EB) technique. This technique uses SPFs developed from a set of reference sites 
similar to the improved site(s) to estimate the change in crash frequency that would have occurred at the 
improved site(s) had the improvement not been made. In stand-alone applications of the EB method, the 
SPFs are developed by regression modeling using a selected group of reference sites. An advantage in 
performing evaluations using Safety Analyst is that appropriate SPFs already incorporated within Safety 
Analyst is available to perform the evaluation. EB concepts are also used in other Safety Analyst modules. 

D.1.3.5. Overview of Module 5 - Systemic Site Selection 
The purpose of the systematic site selection module is to identify the most appropriate sites for the 
implementation of a selected countermeasure. Rather than taking a traditional approach to managing the 
safety improvement process by identifying and correcting high-crash locations where concentrations of 
crashes are found, the systemic site selection module provides the capability to take a system-wide view 
of safety improvement needs and, in conjunction with benefit-cost analyses, identifies sites where safety 
improvements (i.e., typically low-cost countermeasures) are needed and economically justified. Having 
selected a countermeasure for potential implementation, the module is capable of identifying potential 
sites for implementation covering the full range of site subtypes for a given site type (i.e., roadway 
segment, intersection, or ramp). 
 
The systemic site selection module makes use of existing functionality in Module 1 (Network Screening) 
and Module 3 (Economic Appraisal and Priority Ranking) to efficiently identify appropriate sites for 
implementation of a selected countermeasure. The module utilizes the basic network screening peak 
searching and sliding window approaches to identify sites with the highest long-term average crashes of 
the type mitigated by the selected countermeasure. The module also uses the full range of capabilities of 
Module 3 to identify sites where the implementation of the selected countermeasure is economically 
justified and determines the optimal sites for implementation of the selected countermeasure given a 
defined budget. This module improves the efficiency in using Safety Analyst to implement a systematic 
safety analysis approach to safety management. 
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